Replication by a single DNA polymerase of a stretched single-stranded DNA

被引:254
作者
Maier, B
Bensimon, D
Croquette, V
机构
[1] Ecole Normale Super, LPS, CNRS, UMR 8550, F-75231 Paris 05, France
[2] Univ Paris 06, F-75231 Paris, France
[3] Univ Paris 07, F-75231 Paris, France
关键词
molecular motors; DNA elasticity;
D O I
10.1073/pnas.97.22.12002
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A new approach to the study of DNA/protein interactions has been opened through the recent advances in the manipulation of single DNA molecules. These allow the behavior of individual molecular motors to be studied under load and compared with bulk measurements. One example of such a motor is the DNA polymerase, which replicates DNA. We measured the replication rate by a single enzyme of a stretched single strand of DNA. The marked difference between the elasticity of single- and double-stranded DNA allows for the monitoring of replication in real time. We have found that the rate of-replication depends strongly on the stretching force applied to the template. In particular, by varying the load we determined that the biochemical steps limiting replication are coupled to movement. The replication rate increases at low forces, decreases at forces greater than 4 pN, and ceases when the single-stranded DNA substrate is under a load greater than approximate to 20 pN. The decay of the replication rate follows an Arrhenius law and indicates that multiple bases on the template strand are involved in the rate-limiting step of each cycle. This observation is consistent with the induced-fit mechanism for error detection during replication.
引用
收藏
页码:12002 / 12007
页数:6
相关论文
共 31 条
  • [1] Polymerases and the replisome: Machines within machines
    Baker, TA
    Bell, SP
    [J]. CELL, 1998, 92 (03) : 295 - 305
  • [2] Ionic effects on the elasticity of single DNA molecules
    Baumann, CG
    Smith, SB
    Bloomfield, VA
    Bustamante, C
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (12) : 6185 - 6190
  • [3] STRUCTURE OF DNA-POLYMERASE-I KLENOW FRAGMENT BOUND TO DUPLEX DNA
    BEESE, LS
    DERBYSHIRE, V
    STEITZ, TA
    [J]. SCIENCE, 1993, 260 (5106) : 352 - 355
  • [4] WHEN REPLICATION FORKS STOP
    BIERNE, H
    MICHEL, B
    [J]. MOLECULAR MICROBIOLOGY, 1994, 13 (01) : 17 - 23
  • [5] Estimating the persistence length of a worm-like chain molecule from force-extension measurements
    Bouchiat, C
    Wang, MD
    Allemand, JF
    Strick, T
    Block, SM
    Croquette, V
    [J]. BIOPHYSICAL JOURNAL, 1999, 76 (01) : 409 - 413
  • [6] DNA: An extensible molecule
    Cluzel, P
    Lebrun, A
    Heller, C
    Lavery, R
    Viovy, JL
    Chatenay, D
    Caron, F
    [J]. SCIENCE, 1996, 271 (5250) : 792 - 794
  • [7] KINETIC MECHANISM OF DNA-POLYMERASE-I (KLENOW FRAGMENT) - IDENTIFICATION OF A 2ND CONFORMATIONAL CHANGE AND EVALUATION OF THE INTERNAL EQUILIBRIUM-CONSTANT
    DAHLBERG, ME
    BENKOVIC, SJ
    [J]. BIOCHEMISTRY, 1991, 30 (20) : 4835 - 4843
  • [8] GENETIC AND CRYSTALLOGRAPHIC STUDIES OF THE 3',5'-EXONUCLEOLYTIC SITE OF DNA-POLYMERASE-I
    DERBYSHIRE, V
    FREEMONT, PS
    SANDERSON, MR
    BEESE, L
    FRIEDMAN, JM
    JOYCE, CM
    STEITZ, TA
    [J]. SCIENCE, 1988, 240 (4849) : 199 - 201
  • [9] Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution
    Doublié, S
    Tabor, S
    Long, AM
    Richardson, CC
    Ellenberger, T
    [J]. NATURE, 1998, 391 (6664) : 251 - 258
  • [10] The mechanism of action of T7 DNA polymerase
    Doublié, S
    Ellenberger, T
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (06) : 704 - 712