Extensible lattice sequences or quasi Monte Carlo quadrature

被引:69
作者
Hickernell, FJ [1 ]
Hong, HS
L'Ecuyer, P
Lemieux, C
机构
[1] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[2] Univ Montreal, Dept Informat & Rech Operat, Montreal, PQ H3C 3J7, Canada
关键词
discrepancy good lattice point sets; multidimensional; spectral test;
D O I
10.1137/S1064827599356638
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Integration lattices are one of the main types of low discrepancy sets used in quasi-Monte Carlo methods. However, they have the disadvantage of being of fixed size. This article describes the construction of an infinite sequence of points, the first b(m) of which forms a lattice for any nonnegative integer m. Thus, if the quadrature error using an initial lattice is too large, the lattice can be extended without discarding the original points. Generating vectors for extensible lattices are found by minimizing a loss function based on some measure of discrepancy or nonuniformity of the lattice. The spectral test used for finding pseudorandom number generators is one important example of such a discrepancy. The performance of the extensible lattices proposed here is compared to that of other methods for some practical quadrature problems.
引用
收藏
页码:1117 / 1138
页数:22
相关论文
共 64 条
[41]   GENERATING CORRELATION-MATRICES [J].
MARSAGLIA, G ;
OLKIN, I .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (02) :470-475
[42]   CONSTRUCTION OF FULLY SYMMETRIC NUMERICAL INTEGRATION FORMULAS [J].
MCNAMEE, J ;
STENGER, F .
NUMERISCHE MATHEMATIK, 1967, 10 (04) :327-&
[43]   Generating quasi-random paths for stochastic processes [J].
Morokoff, WJ .
SIAM REVIEW, 1998, 40 (04) :765-788
[44]   QUASI-MONTE CARLO INTEGRATION [J].
MOROKOFF, WJ ;
CAFLISCH, RE .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 122 (02) :218-230
[45]   QUASI-RANDOM SEQUENCES AND THEIR DISCREPANCIES [J].
MOROKOFF, WJ ;
CAFLISCH, RE .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (06) :1251-1279
[46]   POINT SETS AND SEQUENCES WITH SMALL DISCREPANCY [J].
NIEDERREITER, H .
MONATSHEFTE FUR MATHEMATIK, 1987, 104 (04) :273-337
[47]  
Niederreiter H., 1996, LONDON MATH SOC LECT, V233, P269
[48]  
Niederreiter H., 1992, RANDOM NUMBER GENERA
[49]  
NIEDERREITER H, 1995, LECT NOTES STAT, V106
[50]  
NIEDERREITER H, 1999, LECT NOTES STAT