Mechanisms of synchronization and pattern formation in a lattice of pulse-coupled oscillators

被引:15
作者
Diaz-Guilera, A
Perez, CJ
Arenas, A
机构
[1] Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain
[2] Univ Rovira & Virgili, Dept Informat Engn, E-43006 Tarragona, Spain
关键词
D O I
10.1103/PhysRevE.57.3820
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze the physical mechanisms leading either to synchronization or to the formation of spatiotemporal patterns in a lattice model of pulse-coupled oscillators. In order to make the system tractable from a mathematical point of view we study a one-dimensional ring with unidirectional coupling. In such a situation, exact results concerning the stability of the fixed of the dynamic evolution of the lattice can be obtained. Furthermore, we show that this stability is the responsible for the different behaviors.
引用
收藏
页码:3820 / 3828
页数:9
相关论文
共 16 条
[11]   SYNCHRONIZATION OF PULSE-COUPLED BIOLOGICAL OSCILLATORS [J].
MIROLLO, RE ;
STROGATZ, SH .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (06) :1645-1662
[12]   On self-organized criticality and synchronization in lattice models of coupled dynamical systems [J].
Perez, CJ ;
Corral, A ;
DiazGuilera, A ;
Christensen, K ;
Arenas, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996, 10 (10) :1111-1151
[13]  
Peskin C.S., MATH ASPECTS HEART P, P268
[14]   MEAN-FIELD ANALYSIS OF NEURONAL SPIKE DYNAMICS [J].
TREVES, A .
NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1993, 4 (03) :259-284
[15]   SELF-SYNCHRONIZATION OF MANY COUPLED OSCILLATORS [J].
VIEIRA, MD ;
LICHTENBERG, AJ ;
LIEBERMAN, MA .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (06) :1563-1577
[16]   BIOLOGICAL RHYTHMS AND BEHAVIOR OF POPULATIONS OF COUPLED OSCILLATORS [J].
WINFREE, AT .
JOURNAL OF THEORETICAL BIOLOGY, 1967, 16 (01) :15-&