Redirection of sphingolipid metabolism toward de novo synthesis of ethanolamine in Leishmania

被引:100
作者
Zhang, Kai
Pompey, Justine M.
Hsu, Fong-Fu
Key, Phillip
Bandhuvula, Padmavathi
Saba, Julie D.
Turk, John
Beverley, Stephen M.
机构
[1] Washington Univ, Sch Med, Dept Mol Microbiol, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Med, St Louis, MO 63110 USA
[3] Childrens Hosp, Oakland Res Inst, Canc Res Ctr, Oakland, CA 94609 USA
关键词
metacyclogenesis; phosphatidylethanolamine; sphingolipid; sphingosine-1-phosphate lyase; virulence;
D O I
10.1038/sj.emboj.7601565
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In most eukaryotes, sphingolipids (SLs) are critical membrane components and signaling molecules. However, mutants of the trypanosomatid protozoan Leishmania lacking serine palmitoyltransferase (spt2(-)) and SLs grow well, although they are defective in stationary phase differentiation and virulence. Similar phenotypes were observed in sphingolipid (SL) mutant lacking the degradatory enzyme sphingosine 1-phosphate lyase (spl(-)). This epistatic interaction suggested that a metabolite downstream of SLs was responsible. Here we show that unlike other organisms, the Leishmania SL pathway has evolved to be the major route for ethanolamine (EtN) synthesis, as EtN supplementation completely reversed the viability and differentiation defects of both mutants. Thus Leishmania has undergone two major metabolic shifts: first in deemphasizing the metabolic roles of SLs themselves in growth, signaling, and maintenance of membrane microdomains, which may arise from the unique combination of abundant parasite lipids; Second, freed of typical SL functional constraints and a lack of alternative routes to produce EtN, Leishmania redirected SL metabolism toward bulk EtN synthesis. Our results thus reveal a striking example of remodeling of the SL metabolic pathway in Leishmania.
引用
收藏
页码:1094 / 1104
页数:11
相关论文
共 64 条
[1]   Rapid transport of phospholipids across the plasma membrane of Leishmania infantum [J].
Araújo-Santos, JM ;
Gamarro, F ;
Castanys, S ;
Herrmann, A ;
Pomorski, T .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 306 (01) :250-255
[2]   The genome of the African trypanosome Trypanosoma brucei [J].
Berriman, M ;
Ghedin, E ;
Hertz-Fowler, C ;
Blandin, G ;
Renauld, H ;
Bartholomeu, DC ;
Lennard, NJ ;
Caler, E ;
Hamlin, NE ;
Haas, B ;
Böhme, W ;
Hannick, L ;
Aslett, MA ;
Shallom, J ;
Marcello, L ;
Hou, LH ;
Wickstead, B ;
Alsmark, UCM ;
Arrowsmith, C ;
Atkin, RJ ;
Barron, AJ ;
Bringaud, F ;
Brooks, K ;
Carrington, M ;
Cherevach, I ;
Chillingworth, TJ ;
Churcher, C ;
Clark, LN ;
Corton, CH ;
Cronin, A ;
Davies, RM ;
Doggett, J ;
Djikeng, A ;
Feldblyum, T ;
Field, MC ;
Fraser, A ;
Goodhead, I ;
Hance, Z ;
Harper, D ;
Harris, BR ;
Hauser, H ;
Hostetter, J ;
Ivens, A ;
Jagels, K ;
Johnson, D ;
Johnson, J ;
Jones, K ;
Kerhornou, AX ;
Koo, H ;
Larke, N .
SCIENCE, 2005, 309 (5733) :416-422
[3]   Endosome sorting and autophagy are essential for differentiation and virulence of Leishmania major [J].
Besteiro, S ;
Williams, RAM ;
Morrison, LS ;
Coombs, GH ;
Mottram, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (16) :11384-11396
[4]   Roles of phosphatidylethanolamine and of its several biosynthetic pathways in Saccharomyces cerevisiae [J].
Birner, R ;
Bürgermeister, M ;
Schneiter, R ;
Daum, G .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (04) :997-1007
[5]   GENE REPLACEMENT IN PARASITIC PROTOZOA [J].
CRUZ, A ;
BEVERLEY, SM .
NATURE, 1990, 348 (6297) :171-173
[6]   Parasitic adaptive mechanisms in infection by Leishmania [J].
Cunningham, AC .
EXPERIMENTAL AND MOLECULAR PATHOLOGY, 2002, 72 (02) :132-141
[7]   Rafts and sphingolipid biosynthesis in the kinetoplastid parasitic protozoa [J].
Denny, PW ;
Smith, DF .
MOLECULAR MICROBIOLOGY, 2004, 53 (03) :725-733
[8]   Sphingolipid-free Leishmania are defective in membrane trafficking, differentiation and infectivity [J].
Denny, PW ;
Goulding, D ;
Ferguson, MAJ ;
Smith, DF .
MOLECULAR MICROBIOLOGY, 2004, 52 (02) :313-327
[9]   Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila [J].
Dobrosotskaya, IY ;
Seegmiller, AC ;
Brown, MS ;
Goldstein, JL ;
Rawson, RB .
SCIENCE, 2002, 296 (5569) :879-883
[10]   Biosynthesis and trafficking of sphingolipids in the yeast Saccharomyces cerevisiae [J].
Funato, K ;
Vallée, B ;
Riezman, H .
BIOCHEMISTRY, 2002, 41 (51) :15105-15114