Quantum circuits for general multiqubit gates -: art. no. 130502

被引:238
作者
Möttönen, M [1 ]
Vartiainen, JJ [1 ]
Bergholm, V [1 ]
Salomaa, MM [1 ]
机构
[1] Aalto Univ, Phys Mat Lab, FIN-02015 Espoo, Finland
基金
日本学术振兴会; 芬兰科学院;
关键词
D O I
10.1103/PhysRevLett.93.130502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a generic elementary gate sequence which is needed to implement a general quantum gate acting on n qubits-a unitary transformation with 4(n) degrees of freedom. For synthesizing the gate sequence, a method based on the so-called cosine-sine matrix decomposition is presented. The result is optimal in the number of elementary one-qubit gates, 4(n), and scales more favorably than the previously reported decompositions requiring 4(n)-2(n+1) controlled NOT gates.
引用
收藏
页码:130502 / 1
页数:4
相关论文
共 18 条
[1]   Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5162-5165
[2]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[3]  
Bullock SS, 2004, QUANTUM INF COMPUT, V4, P27
[4]  
BULLOCK SS, QUANTPH0403141
[5]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[6]   Eigenvector approximation leading to exponential speedup of quantum eigenvalue calculation [J].
Jaksch, P ;
Papageorgiou, A .
PHYSICAL REVIEW LETTERS, 2003, 91 (25) :2579021-2579024
[7]   Cartan decomposition of SU(2n) and control of spin systems [J].
Khaneja, N ;
Glaser, SJ .
CHEMICAL PHYSICS, 2001, 267 (1-3) :11-23
[8]  
Nielsen Michael A, 2002, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[9]  
PAIGE CC, 1994, LINEAR ALGEBRA APPL, V209, P303
[10]   Quantum gate arrays can be programmed to evaluate the expectation value of any operator [J].
Paz, JP ;
Roncaglia, A .
PHYSICAL REVIEW A, 2003, 68 (05)