A robust video foreground segmentation by using generalized Gaussian mixture modeling

被引:51
作者
Allili, Mohand Saied [1 ]
Bouguila, Nizar [2 ]
Ziou, Djemel [1 ]
机构
[1] Univ Sherbrooke, Dept Comp Sci, Sherbrooke, PQ J1K 2R1, Canada
[2] Concordia Univ, CIISE, Quebec City, PQ H3G 2W1, Canada
来源
FOURTH CANADIAN CONFERENCE ON COMPUTER AND ROBOT VISION, PROCEEDINGS | 2007年
基金
加拿大自然科学与工程研究理事会;
关键词
mixture of general gaussians (MoGG); MML; video foreground segmentation;
D O I
10.1109/CRV.2007.7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a robust video foreground modeling by using a finite mixture model of generalized Gaussian distributions (GDD). The model has a flexibility to model the video background in the presence of sudden illumination changes and shadows, allowing for an efficient foreground segmentation. In a first part of the present work, we propose a derivation of the online estimation of the parameters of the mixture of GDDS and we propose a Bayesian approach for the selection of the number of classes. In a second part, we show experiments of video foreground segmentation demonstrating the performance of the proposed model.
引用
收藏
页码:503 / +
页数:3
相关论文
共 22 条
[1]  
ALLILI MS, 2006, P IEEE C COMP VIS PA, P135
[2]  
ALLILI MS, 2006, FINITE GENERALIZED G
[3]   Reliable location and regression estimates with application to range image segmentation [J].
Baccar, M ;
Gee, LA ;
Abidi, MA .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 1999, 11 (03) :195-205
[4]   MODEL-BASED GAUSSIAN AND NON-GAUSSIAN CLUSTERING [J].
BANFIELD, JD ;
RAFTERY, AE .
BIOMETRICS, 1993, 49 (03) :803-821
[5]   Finding overlapping components with MML [J].
Baxter, RA ;
Oliver, JJ .
STATISTICS AND COMPUTING, 2000, 10 (01) :5-16
[6]   A real-time computer vision system for measuring traffic parameters [J].
Beymer, D ;
McLauchlan, P ;
Coifman, B ;
Malik, J .
1997 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, :495-501
[7]   Online clustering via finite mixtures of Dirichlet and minimum message length [J].
Bouguila, N ;
Ziou, D .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2006, 19 (04) :371-379
[8]   Unsupervised selection of a finite Dirichlet mixture model: An MML-based approach [J].
Bouguila, Nizar ;
Ziou, Djemel .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2006, 18 (08) :993-1009
[9]   TRANSFORMATION OF INDEPENDENT VARIABLES [J].
BOX, GEP ;
TIDWELL, PW .
TECHNOMETRICS, 1962, 4 (04) :531-&
[10]   Flexible background mixture models for foreground segmentation [J].
Cheng, Jian ;
Yang, Jie ;
Zhou, Yue ;
Cui, Yingying .
IMAGE AND VISION COMPUTING, 2006, 24 (05) :473-482