Testing regression equations to derive long-term global soil moisture datasets from passive microwave observations

被引:42
作者
Al-Yaari, A. [1 ]
Wigneron, J. P. [1 ]
Kerr, Y. [2 ]
de Jeu, R. [3 ,4 ]
Rodriguez-Fernandez, N. [2 ]
van der Schalie, R. [3 ,4 ]
Al Bitar, A. [2 ]
Mialon, A. [2 ]
Richaume, P. [2 ]
Dolman, A. [3 ]
Ducharne, A. [5 ]
机构
[1] INRA, ISPA, UMR1391, Villenave Dornon, France
[2] UPS, CNRS, CESBIO, CNES,IRD,UMR 5126, Toulouse, France
[3] VU Univ Amsterdam VUA, Fac Earth & Life Sci, Amsterdam, Netherlands
[4] Transmissivity BV, Space Technol Ctr, Noordwijk, Netherlands
[5] UPMC, Univ Paris 04, UMR METIS 7619, CNRS,EPHE, Paris, France
关键词
SMOS; AMSR-E; Soil moisture; Statistical regression; CATCHMENT-BASED APPROACH; LAND-SURFACE PROCESSES; AMSR-E; IN-SITU; TEMPORAL RESOLUTION; RETRIEVAL ALGORITHM; SMOS; MODEL; EMISSION; PRODUCTS;
D O I
10.1016/j.rse.2015.11.022
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Within the framework of the efforts of the European Space Agency (ESA) to develop the most consistent and complete record of surface soil moisture (SSM), this study investigated a statistical approach to retrieve a global and long-term SSM dataset from space-borne observations. More specifically, this study investigated the ability of physically based statistical regressions to retrieve SSM from two passive microwave remote sensing observations: the Advanced Microwave Scanning Radiometer (AMSR-E; 2003-Sept. 2011) and the Soil Moisture and Ocean Salinity (SMOS) satellite. Regression coefficients were calibrated using AMSR-E horizontal and vertical brightness temperature (TB) observations and SMOS level 3 SSM (SMOSL3; as a training dataset). This calibration process was carried out over the June 2010-Sept. 2011 period, over which both SMOS and AMSR-E observations coincide. Based on these calibrated coefficients, a global SSM product (referred here to as AMSR-reg) was computed from the AMSR-E TB observations during the 2003-2011 period. The regression quality was assessed by evaluating the AMSR-reg SSM product against the SMOSL3 SSM product over the period of calibration, in terms of correlation (R) and Root Mean Square Error (RMSE). A good agreement (mean global R = 0.60 and mean global RMSE = 0.057 m(3)/m(3)), was obtained between the AMSR-reg and SMOSL3 SSM products particularly over Australia, central USA, central Asia, and the Sahel. In a second step, the AMSR-reg SSM retrievals and commonly used AMSR-E SSM retrievals derived from the Land Parameter Retrieval Model (AMSR-LPRM), were evaluated against two kinds of SSM references (i) the global MERRA-Land SSM simulations and (ii) in situ measurements over 2003-2009. The results demonstrated that both AMSR-reg and AMSR-LPRM (better when considering global simulations) successfully captured the temporal dynamics of the references used having comparable correlation values. AMSR-reg was more consistent with MERRA-land than AMSR-LPRM in terms of unbiased RMSE (ubRMSE) with a global average of ubRMSE of 0.055 m(3)/m(3) for AMSR-reg and 0.084 m(3)/m(3) for AMSRLPRM. In conclusion, the statistical regression, which is tested here for the first time using long-term spaceborne TB datasets, appears to be a promising approach for retrieving SSM from passive microwave remote sensing TB observations. (C)2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:453 / 464
页数:12
相关论文
共 75 条
[51]   A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index [J].
Owe, M ;
de Jeu, R ;
Walker, J .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (08) :1643-1654
[52]   Multisensor historical climatology of satellite-derived global land surface moisture [J].
Owe, Manfred ;
de Jeu, Richard ;
Holmes, Thomas .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2008, 113 (F1)
[53]   Comparing soil moisture retrievals from SMOS and ASCAT over France [J].
Parrens, M. ;
Zakharova, E. ;
Lafont, S. ;
Calvet, J. -C. ;
Kerr, Y. ;
Wagner, W. ;
Wigneron, J. -P. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2012, 16 (02) :423-440
[54]   Soil moisture mapping over West Africa with a 30-min temporal resolution using AMSR-E observations and a satellite-based rainfall product [J].
Pellarin, T. ;
Tran, T. ;
Cohard, J. -M. ;
Galle, S. ;
Laurent, J. -P. ;
de Rosnay, P. ;
Vischel, T. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2009, 13 (10) :1887-1896
[55]   Hydrological modelling and associated microwave emission of a semi-arid region in South-western Niger [J].
Pellarin, T. ;
Laurent, J. P. ;
Cappelaere, B. ;
Decharme, B. ;
Descroix, L. ;
Ramier, D. .
JOURNAL OF HYDROLOGY, 2009, 375 (1-2) :262-272
[56]   Evaluation of a Global Soil Moisture Product from Finer Spatial Resolution SAR Data and Ground Measurements at Irish Sites [J].
Pratola, Chiara ;
Barrett, Brian ;
Gruber, Alexander ;
Kiely, Gerard ;
Dwyer, Edward .
REMOTE SENSING, 2014, 6 (09) :8190-8219
[57]  
Reichle R.H., 2012, The MERRA-Land Data Product. GMAO Office Note No. 3 Version 1.2
[58]   Assessment and Enhancement of MERRA Land Surface Hydrology Estimates [J].
Reichle, Rolf H. ;
Koster, Randal D. ;
De Lannoy, Gabrielle J. M. ;
Forman, Barton A. ;
Liu, Qing ;
Mahanama, Sarith P. P. ;
Toure, Ally .
JOURNAL OF CLIMATE, 2011, 24 (24) :6322-6338
[59]   MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications [J].
Rienecker, Michele M. ;
Suarez, Max J. ;
Gelaro, Ronald ;
Todling, Ricardo ;
Bacmeister, Julio ;
Liu, Emily ;
Bosilovich, Michael G. ;
Schubert, Siegfried D. ;
Takacs, Lawrence ;
Kim, Gi-Kong ;
Bloom, Stephen ;
Chen, Junye ;
Collins, Douglas ;
Conaty, Austin ;
Da Silva, Arlindo ;
Gu, Wei ;
Joiner, Joanna ;
Koster, Randal D. ;
Lucchesi, Robert ;
Molod, Andrea ;
Owens, Tommy ;
Pawson, Steven ;
Pegion, Philip ;
Redder, Christopher R. ;
Reichle, Rolf ;
Robertson, Franklin R. ;
Ruddick, Albert G. ;
Sienkiewicz, Meta ;
Woollen, Jack .
JOURNAL OF CLIMATE, 2011, 24 (14) :3624-3648
[60]   SOIL MOISTURE RETRIEVAL FROM SMOS OBSERVATIONS USING NEURAL NETWORKS [J].
Rodriguez-Fernandez, N. ;
Richaume, P. ;
Aires, F. ;
Prigent, C. ;
Kerr, Y. ;
Kolassa, J. ;
Jimenez, C. ;
Cabot, F. ;
Mahmoodi, A. .
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, :2431-2434