Compactons in a class of nonlinear dispersive equations

被引:55
作者
Wazwaz, AM [1 ]
机构
[1] St Xavier Univ, Dept Math & Comp Sci, Chicago, IL 60655 USA
关键词
compactons; solitons; nonlinear dispersion;
D O I
10.1016/S0895-7177(03)00010-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, we study the compactons structures in a class of nonlinear dispersive equations The compactons, new form of solitary waves free of exponential tails and width independent of amplitude, are formally constructed. We further establish solitary patterns solutions for the defocusing branches of these models. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:333 / 341
页数:9
相关论文
共 23 条
[1]  
Adomian Adomian G. G., Solving Frontier Problems in Physics. The Decomposition Method
[3]   Particle methods for dispersive equations [J].
Chertock, A ;
Levy, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 171 (02) :708-730
[4]   Compacton solutions in a class of generalized fifth-order Korteweg-de Vries equations [J].
Cooper, F ;
Hyman, JM ;
Khare, A .
PHYSICAL REVIEW E, 2001, 64 (02) :13
[5]   Shape profile of compactlike discrete breathers in nonlinear dispersive lattice systems [J].
Dey, B ;
Eleftheriou, M ;
Flach, S ;
Tsironis, GP .
PHYSICAL REVIEW E, 2002, 65 (01)
[6]   Breather compactons in nonlinear Klein-Gordon systems [J].
Dinda, PT ;
Remoissenet, M .
PHYSICAL REVIEW E, 1999, 60 (05) :6218-6221
[7]   From kinks to compactonlike kinks [J].
Dusuel, S ;
Michaux, P ;
Remoissenet, M .
PHYSICAL REVIEW E, 1998, 57 (02) :2320-2326
[8]   A numerical study of compactons [J].
Ismail, MS ;
Taha, TR .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (06) :519-530
[9]  
KIVSHAR Y, 1994, NONLINEAR COHERENT S, V329
[10]   Patterns on liquid surfaces: cnoidal waves, compactons and scaling [J].
Ludu, A ;
Draayer, JP .
PHYSICA D, 1998, 123 (1-4) :82-91