Neuroelectromagnetic Forward Head Modeling Toolbox

被引:87
作者
Acar, Zeynep Akalin [1 ]
Makeig, Scott [1 ]
机构
[1] Univ Calif San Diego 0961, Inst Neural Computat, Swartz Ctr Computat Neurosci, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
MATLAB; Software; Head modeling; EEG; Boundary Element Method; BEM; Realistic; 4-layer head model; MNI; Inverse problem; Source localization; INDEPENDENT COMPONENT ANALYSIS; EEG SOURCE ANALYSIS; HUMAN-BRAIN; TISSUE CONDUCTIVITY; ELEMENT-METHOD; LOCALIZATION; DIPOLES; MEG; SENSITIVITY; SIMULATION;
D O I
10.1016/j.jneumeth.2010.04.031
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This paper introduces a Neuroelectromagnetic Forward Head Modeling Toolbox (NET) running under MATLAB (The Mathworks, Inc.) for generating realistic head models from available data (MRI and/or electrode locations) and for computing numerical solutions for the forward problem of electromagnetic source imaging. The NFT includes tools for segmenting scalp, skull, cerebrospinal fluid (CSF) and brain tissues from T1-weighted magnetic resonance (MR) images. The Boundary Element Method (BEM) is used for the numerical solution of the forward problem. After extracting segmented tissue volumes, surface BEM meshes can be generated. When a subject MR image is not available, a template head model can be warped to measured electrode locations to obtain an individualized head model. Toolbox functions may be called either from a graphic user interface compatible with EEGLAB (http://sccn.ucsd.edu/eeglab), or from the MATLAB command line. Function help messages and a user tutorial are included. The toolbox is freely available under the GNU Public License for noncommercial use and open source development. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:258 / 270
页数:13
相关论文
共 48 条
[1]  
ACAR CE, 1999, P IEEE EMBS C SEPT
[2]   An advanced boundary element method (BEM) implementation for the forward problem of electromagnetic source imaging [J].
Akahn-Acar, Z ;
Gençer, NG .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (21) :5011-5028
[3]  
AKALINACAR Z, 2008, P IEEE EMBC
[4]  
AKALINACAR Z, 2005, THESIS U MIDDLE E TU
[5]  
[Anonymous], 1994, RAPPORTS J RAMAN
[6]  
[Anonymous], 1979, CYBERNET
[7]  
[Anonymous], 2005, The ITK Software Guide
[8]   Parallel implementation of the accelerated BEM approach for EMSI of the human brain [J].
Ataseven, Y. ;
Akalin-Acar, Z. ;
Acar, C. E. ;
Gencer, N. G. .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2008, 46 (07) :671-679
[9]   The electrical conductivity of human cerebrospinal fluid at body temperature [J].
Baumann, SB ;
Wozny, DR ;
Kelly, SK ;
Meno, FM .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1997, 44 (03) :220-223
[10]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159