Recursion relations for unitary integrals, combinatorics and the Toeplitz lattice

被引:26
作者
Adler, M [1 ]
van Moerbeke, P
机构
[1] Brandeis Univ, Dept Math, Waltham, MA 02454 USA
[2] Univ Catholique Louvain, Dept Math, B-1348 Louvain, Belgium
关键词
PERMUTATIONS; MATRICES; PAINLEVE;
D O I
10.1007/s00220-003-0818-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In a discussion in spring 2001, Alexei Borodin showed us recursion relations for the Toeplitz determinants going with the symbols e(t(z + z-1)) and (1 - xiz)(alpha) (1 - xiz(-1))(beta). Borodin obtained these relations using Riemann-Hilbert methods; see the recent work of Borodin B and Baik Baik. The nature of Borodin's recursion relations pointed towards the Toeplitz lattice and its Virasoro algebra, introduced by us in [3]. In this paper, we take the Toeplitz lattice and Virasoro algebra approach for a fairly large class of symbols, leading to a systematic way of generating recursion relations. The latter are very naturally expressed in terms of the L-matrices appearing in the Toeplitz lattice equations. As a surprise, we find, compared to Borodin's, a different set of relations, except for the 3-step relations associated with the symbol e(t(z + z-1)). The Painleve analysis of the Toeplitz lattice enables us to show the "singularity confinement'' for these recursion relations.
引用
收藏
页码:397 / 440
页数:44
相关论文
共 14 条
[1]   THE COMPLEX-GEOMETRY OF THE KOWALEWSKI-PAINLEVE ANALYSIS [J].
ADLER, M ;
VANMOERBEKE, P .
INVENTIONES MATHEMATICAE, 1989, 97 (01) :3-51
[2]  
Adler M, 2001, COMMUN PUR APPL MATH, V54, P153, DOI 10.1002/1097-0312(200102)54:2<153::AID-CPA2>3.0.CO
[3]  
2-5
[4]   The spectrum of coupled random matrices [J].
Adler, M ;
Van Moerbeke, P .
ANNALS OF MATHEMATICS, 1999, 149 (03) :921-976
[5]  
[Anonymous], CRM SER MATH PHYS
[6]  
[Anonymous], ARXIVMATHPR0107079
[7]   A fredholm determinant formula for Toeplitz determinants [J].
Borodin, A ;
Okounkov, A .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 37 (04) :386-396
[8]  
BORODIN A, ARXIVMATHPH0111008
[9]   SYMMETRIC FUNCTIONS AND P-RECURSIVENESS [J].
GESSEL, IM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1990, 53 (02) :257-285
[10]  
McMillan E.M., 1971, TOPICS MODERN PHYSIC, P219