Photoinduced Structural Conversions of Transition Metal Chalcogenide Materials

被引:32
作者
Teo, M. Y. C. [2 ]
Kulinich, S. A. [2 ,3 ]
Plaksin, O. A. [1 ,4 ]
Zhu, A. L. [2 ]
机构
[1] Leypunsky Inst Phys & Power Engn, Obninsk 249033, Kaluga Region, Russia
[2] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada
[3] Univ Quebec, Dept Appl Sci, Saguenay, PQ G7H 2B1, Canada
[4] Obninsk State Tech Univ Nucl Power Engn, Obninsk 249040, Kaluga Region, Russia
基金
加拿大自然科学与工程研究理事会;
关键词
X-RAY PHOTOELECTRON; OXIDIZED PYRRHOTITE; PYRITE SURFACES; MODEL CATALYSTS; RAMAN-SPECTRA; THIN-FILMS; SULFUR; IRON; SPECTROSCOPY; FES2;
D O I
10.1021/jp912088y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The conversions of NiAs-type structures of transition metal chalcogenides (FeS and CoSe) to pyrite-type structures of dichalcogenides (FeS2 and CoSe2, respectively) under irradiation by HeNe laser (wavelength, 632.8 nm; intensity, 6 x 10(4) W/cm(2)) have been investigated Using Raman spectroscopy. The laser-induced conversions give rise to Raman peaks corresponding to vibrations of S-S or Se-Se bonds of respective pyrite structures. The results are of interest For the characterization and fabrication of pyrite-like structures necessary for applications as oxygen reduction reaction catalysts. Material modifications at the micrometer and submicrometer levels are attainable. I-lie structural conversions are accompanied by self-polymerization of excess chalcogen. Extended laser irradiation (> 500 s) in air induces the substitution of chalcogen (S or Se) by oxygen in the chalcogenide materials and the subsequent formation of transition metal (Fe or Co) oxides. Excess chalcogen appears to prevent further oxidation. The article also presents conditions necessary to avoid laser-induced structural changes and oxidation of metal chalcogenide materials during Raman measurements.
引用
收藏
页码:4173 / 4180
页数:8
相关论文
共 53 条
[21]   Electrooxidation of COH2/CO and mixtures on a carbon-supported Pt catalyst -: a kinetic and mechanistic study by differential electrochemical mass spectrometry [J].
Jusys, Z ;
Kaiser, J ;
Behm, RJ .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2001, 3 (21) :4650-4660
[22]   ATOMIC ARRANGEMENT IN VITREOUS SELENIUM [J].
KAPLOW, R ;
ROWE, TA ;
AVERBACH, BL .
PHYSICAL REVIEW, 1968, 168 (03) :1068-&
[23]   High-pressure Raman spectroscopic studies of FeS2 pyrite [J].
Kleppe, AK ;
Jephcoat, AP .
MINERALOGICAL MAGAZINE, 2004, 68 (03) :433-441
[24]  
Lide DR., 2005, Handbook of chemistry and physics
[25]   IDENTIFICATION OF FUNDAMENTAL VIBRATIONAL MODES OF TRIGONAL ALPHA-MONOCLINIC AND AMORPHOUS SELENIUM [J].
LUCOVSKY, G ;
MOORADIAN, A ;
TAYLOR, W ;
WRIGHT, GB ;
KEEZER, RC .
SOLID STATE COMMUNICATIONS, 1967, 5 (02) :113-+
[26]   Infrared spectroscopic study of CO adsorption and electro-oxidation on carbon-supported Pt nanoparticles: Interparticle versus intraparticle heterogeneity [J].
Maillard, F ;
Savinova, ER ;
Simonov, PA ;
Zaikovskii, VI ;
Stimming, U .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (46) :17893-17904
[27]   A LASER RAMAN MICROPROBE STUDY OF SOME GEOLOGICALLY IMPORTANT SULFIDE MINERALS [J].
MERNAGH, TP ;
TRUDU, AG .
CHEMICAL GEOLOGY, 1993, 103 (1-4) :113-127
[28]  
Mills K.C., 1974, THERMODYNAMIC DATA I
[29]  
Moulder J.F., 1979, HDB XRAY PHOTOELECTR
[30]   X-RAY PHOTOELECTRON AND AUGER ELECTRON-SPECTROSCOPY OF AIR-OXIDIZED PYRRHOTITE - DISTRIBUTION OF OXIDIZED SPECIES WITH DEPTH [J].
MYCROFT, JR ;
NESBITT, HW ;
PRATT, AR .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1995, 59 (04) :721-733