Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species

被引:190
作者
Saetre, P
Stark, JM [1 ]
机构
[1] Utah State Univ, Dept Biol, Logan, UT 84322 USA
[2] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA
基金
美国国家科学基金会;
关键词
microbial food webs; microbial model; N mineralization; N immobilization; substrate-use efficiency;
D O I
10.1007/s00442-004-1718-9
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Sporadic summer rainfall in semi-arid ecosystems can provide enough soil moisture to drastically increase CO2 efflux and rates of soil N cycling. The magnitudes of C and N pulses are highly variable, however, and the factors regulating these pulses are poorly understood. We examined changes in soil respiration, bacterial, fungal and microfaunal populations, and gross rates of N mineralization, nitrification, and NH4+ and NO3- immobilization during the 10 days following wetting of dry soils collected from stands of big sagebrush (Artemisia tridentata) and cheatgrass (Bromus tectorum) in central Utah. Soil CO2 production increased more than tenfold during the 17 h immediately following wetting. The labile organic C pool released by wetting was almost completely respired within 2-3 days, and was nearly three times as large in sagebrush soil as in cheatgrass. In spite of larger labile C pools beneath sagebrush, microbial and microfaunal populations were nearly equal in the two soils. Bacterial and fungal growth coincided with depletion of labile and populations peaked in both soils 2 days after wetting. Protozoan populations, whose biomass was nearly 3,000-fold lower than bacteria and fungi, peaked after 2-4 days. Gross N mineralization and nitrification rates were both faster in cheatgrass soil than in sagebrush, and caused greater nitrate accumulation in cheatgrass soil. Grazing of bacteria and fungi by protozoans and nematodes could explain neither temporal trends in N mineralization rates nor differences between soil types. However, a mass balance model indicated that the initial N pulse was associated with degradation of microbial substrates that were rich in N (C:N < 8.3): and that microbes had shifted to substrates with lower N contents (C:N = 15-25) by day 7 of the incubation. The model also suggested that the labile organic matter in cheatgrass soil had a lower C:N ratio than in sagebrush, and this promoted faster N cycling rates and greater N availability. This study provides evidence that the high N availability often associated with wetting of cheatgrass soils is a result of cheatgrass supplying substrates to microbes that are of high decomposability and N content.
引用
收藏
页码:247 / 260
页数:14
相关论文
共 53 条
[31]  
2
[32]   Release of intracellular solutes by four soil bacteria exposed to dilution stress [J].
Halverson, LJ ;
Jones, TM ;
Firestone, MK .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2000, 64 (05) :1630-1637
[34]   Elevated CO2 and nutrient addition alter soil N cycling and N trace gas fluxes with early season wet-up in a California annual grassland [J].
Hungate, BA ;
Lund, CP ;
Pearson, HL ;
Chapin, FS .
BIOGEOCHEMISTRY, 1997, 37 (02) :89-109
[35]   INFERRING TROPHIC TRANSFERS FROM PULSE-DYNAMICS IN DETRITAL FOOD WEBS [J].
HUNT, HW ;
ELLIOTT, ET ;
WALTER, DE .
PLANT AND SOIL, 1989, 115 (02) :247-259
[36]   TROPHIC INTERACTIONS AND NITROGEN CYCLING IN A SEMIARID GRASSLAND SOIL .1. SEASONAL DYNAMICS OF THE NATURAL-POPULATIONS, THEIR INTERACTIONS AND EFFECTS ON NITROGEN CYCLING [J].
INGHAM, ER ;
TROFYMOW, JA ;
AMES, RN ;
HUNT, HW ;
MORLEY, CR ;
MOORE, JC ;
COLEMAN, DC .
JOURNAL OF APPLIED ECOLOGY, 1986, 23 (02) :597-614
[37]   Root responses and nitrogen acquisition by Artemisia tridentata and Agropyron desertorum following small summer rainfall events [J].
Ivans, CY ;
Leffler, AJ ;
Spaulding, U ;
Stark, JM ;
Ryel, RJ ;
Caldwell, MM .
OECOLOGIA, 2003, 134 (03) :317-324
[38]   MICROBIAL BIOMASS RESPONSE TO A RAPID INCREASE IN WATER POTENTIAL WHEN DRY SOIL IS WETTED [J].
KIEFT, TL ;
SOROKER, E ;
FIRESTONE, MK .
SOIL BIOLOGY & BIOCHEMISTRY, 1987, 19 (02) :119-126
[39]  
Longland W. S., 1995, J ARID LAND STUD S, V5S, P57
[40]  
MARUMOTO T, 1977, Soil Science and Plant Nutrition, V23, P125, DOI 10.1080/00380768.1977.10433030