UCP-3 expression in skeletal muscle: effects of exercise, hypoxia, and AMP-activated protein kinase

被引:136
作者
Zhou, M [1 ]
Lin, BZ [1 ]
Coughlin, S [1 ]
Vallega, G [1 ]
Pilch, PF [1 ]
机构
[1] Boston Univ, Sch Med, Dept Biochem, Boston, MA 02118 USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM | 2000年 / 279卷 / 03期
关键词
adenosine 5 '-monophosphate-activated protein kinase; 5 '-amino-4-imidazolecarboxamide ribonucleoside; rats;
D O I
10.1152/ajpendo.2000.279.3.E622
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Uncoupling protein 3 (UCP-3), a member of the mitochondrial transporter superfamily, is expressed primarily in skeletal muscle where it may play a role in altering metabolic function under conditions of fuel depletion caused, for example, by fasting and exercise. Here, we show that treadmill running by rats rapidly (30 min) induces skeletal muscle UCP-3 mRNA expression (sevenfold after 200 min), as do hypoxia and swimming in a comparably rapid and substantial fashion. The expression of the mitochondrial transporters, carnitine palmitoyltransferase 1 and the tricarboxylate carrier, is unaffected under these conditions. Hypoxia and exercise-mediated induction of UCP-3 mRNA result in a corresponding four- to sixfold increase in rat UCP-3 protein. We treated extensor digitorum longus (EDL) muscle with 5'-amino-4-imidazolecarboxamide ribonucleoside (AICAR), a compound that activates AMP-activated protein kinase (AMPK), an enzyme known to be stimulated during exercise and hypoxia. Incubation of rat EDL muscle in vitro for 30 min with 2 mM AICAR causes a threefold increase in UCP-3 mRNA and a 1.5-fold increase of UCP-3 protein compared with untreated muscle. These data are consistent with the notion that activation of AMPK, presumably as a result of fuel depletion, rapidly regulates UCP-3 gene expression.
引用
收藏
页码:E622 / E629
页数:8
相关论文
共 56 条
[1]   Aging and acute exercise enhance free radical generation in rat skeletal muscle [J].
Bejma, J ;
Ji, LL .
JOURNAL OF APPLIED PHYSIOLOGY, 1999, 87 (01) :465-470
[2]   Human skeletal muscle carnitine palmitoyltransferase I activity determined in isolated intact mitochondria [J].
Berthon, PM ;
Howlett, RA ;
Heigenhauser, GJF ;
Spriet, LL .
JOURNAL OF APPLIED PHYSIOLOGY, 1998, 85 (01) :148-153
[3]   Effect of endurance training on mRNA expression of uncoupling proteins 1, 2, and 3 in the rat [J].
Boss, O ;
Samec, S ;
Desplanches, D ;
Mayet, MH ;
Seydoux, J ;
Muzzin, P ;
Giacobino, JP .
FASEB JOURNAL, 1998, 12 (03) :335-339
[4]   Uncoupling protein-3: A new member of the mitochondrial carrier family with tissue-specific expression [J].
Boss, O ;
Samec, S ;
PaoloniGiacobino, A ;
Rossier, C ;
Dulloo, A ;
Seydoux, J ;
Muzzin, P ;
Giacobino, JP .
FEBS LETTERS, 1997, 408 (01) :39-42
[5]   Uncoupling protein-3 expression in rodent skeletal muscle is modulated by food intake but not by changes in environmental temperature [J].
Boss, O ;
Samec, S ;
Kühne, F ;
Bijlenga, P ;
Assimacopoulos-Jeannet, F ;
Seydoux, J ;
Giacobino, JP ;
Muzzin, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (01) :5-8
[6]   Oxidant, mitochondria and calcium: An overview [J].
Chakraborti, T ;
Mondal, M ;
Roychoudhury, S ;
Chakraborti, S .
CELLULAR SIGNALLING, 1999, 11 (02) :77-85
[7]   SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION [J].
CHOMCZYNSKI, P ;
SACCHI, N .
ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) :156-159
[8]   5-AMINOIMIDAZOLE-4-CARBOXAMIDE RIBONUCLEOSIDE - A SPECIFIC METHOD FOR ACTIVATING AMP-ACTIVATED PROTEIN-KINASE IN INTACT-CELLS [J].
CORTON, JM ;
GILLESPIE, JG ;
HAWLEY, SA ;
HARDIE, DG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1995, 229 (02) :558-565
[9]   Regulation of skeletal muscle UCP-2 and UCP-3 gene expression by exercise and denervation [J].
Cortright, RN ;
Zheng, DH ;
Jones, JP ;
Fluckey, JD ;
DiCarlo, SE ;
Grujic, D ;
Lowell, BB ;
Dohm, GL .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1999, 276 (01) :E217-E221
[10]  
DAWSON TL, 1993, AM J PHYSIOL, V264, P961