Metropolis Monte Carlo implementation of Bayesian time-domain parameter estimation: Application to coupling constant estimation from antiphase multiplets

被引:29
作者
Andrec, M [1 ]
Prestegard, JH [1 ]
机构
[1] Yale Univ, Dept Chem, New Haven, CT 06511 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1006/jmre.1997.1304
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The Bayesian perspective on statistics asserts that it makes sense to speak of a probability of an unknown parameter having a particular value. Given a model for an observed, noise-corrupted signal, we may use Bayesian methods to estimate not only the most probable value for each parameter but also their distributions. We present an implementation of the Bayesian parameter estimation formalism developed by G. L. Bretthorst (1990, J. Magn. Reson. 88, 533) using the Metropolis Monte Carlo sampling algorithm to perform the parameter and error estimation. This allows us to make very few assumptions about the shape of the posterior distribution, and allows the easy introduction of prior knowledge about constraints among the model parameters. We present evidence that the error estimates obtained in this manner are realistic, and that the Monte Carlo approach can be used to accurately estimate coupling constants from antiphase doublets in synthetic and experimental data. (C) 1998 Academic Press.
引用
收藏
页码:217 / 232
页数:16
相关论文
共 38 条