Subunit composition determines Kv1 potassium channel surface expression

被引:146
作者
Manganas, LN
Trimmer, JS [1 ]
机构
[1] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Inst Cell & Dev Biol, Stony Brook, NY 11794 USA
关键词
D O I
10.1074/jbc.M005010200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Shaker-related or Kv1 voltage-gated K+ channels play critical roles in regulating the excitability of mammalian neurons. Native Kv1 channel complexes are octamers of four integral membrane alpha subunits and four cytoplasmic beta subunits, such that a tremendous diversity of channel complexes can be assembled from the array of alpha and beta subunits expressed in the brain. However, biochemical and immunohistochemical studies have demonstrated that only certain complexes predominate in the mammalian brain, suggesting that regulatory mechanisms exist that ensure plasma membrane targeting of only physiologically appropriate channel complexes. Here we show that Kv1 channels assembled as homo- or heterotetrameric complexes had distinct surface expression characteristics in both transfected mammalian cells and hippocampal neurons. Homotetrameric Kv1.1 channels were localized to endoplasmic reticulum, Kv1.4 channels to the cell surface, and Kv1.2 channels to both endoplasmic reticulum and the cell surface. Heteromeric assembly with Kv1.4 resulted in dose-dependent increases in cell surface expression of coassembled Kv1.1 and Kv1.2, while coassembly with Kv1.1 had a dominant-negative effect on Kv1.2 and Kv1.4 surface expression. Coassembly with Kv beta subunits promoted cell surface expression of each Kv1 heteromeric complex. These data suggest that subunit composition and stoichiometry determine surface expression characteristics of Kv1 channels in excitable cells.
引用
收藏
页码:29685 / 29693
页数:9
相关论文
共 51 条
[1]   Modulation of A-type potassium channels by a family of calcium sensors [J].
An, WF ;
Bowlby, MR ;
Betty, M ;
Cao, J ;
Ling, HP ;
Mendoza, G ;
Hinson, JW ;
Mattsson, KI ;
Strassle, BW ;
Trimmer, JS ;
Rhodes, KJ .
NATURE, 2000, 403 (6769) :553-556
[2]   RAT HIPPOCAMPAL NEURONS IN DISPERSED CELL-CULTURE [J].
BANKER, GA ;
COWAN, WM .
BRAIN RESEARCH, 1977, 126 (03) :397-425
[3]   Generation and characterization of subtype-specific monoclonal antibodies to K+ channel alpha- and beta-subunit polypeptides [J].
BekeleArcuri, Z ;
Matos, MF ;
Manganas, L ;
Strassle, BW ;
Monaghan, MM ;
Rhodes, KJ ;
Trimmer, JS .
NEUROPHARMACOLOGY, 1996, 35 (07) :851-865
[4]   POSTTRANSLATIONAL ASSOCIATION OF IMMUNOGLOBULIN HEAVY-CHAIN BINDING-PROTEIN WITH NASCENT HEAVY-CHAINS IN NONSECRETING AND SECRETING HYBRIDOMAS [J].
BOLE, DG ;
HENDERSHOT, LM ;
KEARNEY, JF .
JOURNAL OF CELL BIOLOGY, 1986, 102 (05) :1558-1566
[5]   COLOCALIZED TRANSMEMBRANE DETERMINANTS FOR ER DEGRADATION AND SUBUNIT ASSEMBLY EXPLAIN THE INTRACELLULAR FATE OF TCR CHAINS [J].
BONIFACINO, JS ;
COSSON, P ;
KLAUSNER, RD .
CELL, 1990, 63 (03) :503-513
[6]  
CHANDY KG, 1995, LIGAND VOLTAGE GATED, P1
[7]   Subunit composition of Kv1 channels in human CNS [J].
Coleman, SK ;
Newcombe, J ;
Pryke, J ;
Dolly, JO .
JOURNAL OF NEUROCHEMISTRY, 1999, 73 (02) :849-858
[8]   Identification and biochemical characterization of a novel nortriterpene inhibitor of the human lymphocyte voltage-gated potassium channel, Kv1.3 [J].
Felix, JP ;
Bugianesi, RM ;
Schmalhofer, WA ;
Borris, R ;
Goetz, MA ;
Hensens, OD ;
Bao, JM ;
Kayser, F ;
Parsons, WH ;
Rupprecht, K ;
Garcia, ML ;
Kaczorowski, GJ ;
Slaughter, RS .
BIOCHEMISTRY, 1999, 38 (16) :4922-4930
[9]   ROLE OF THE ENDOPLASMIC-RETICULUM CHAPERONE CALNEXIN IN SUBUNIT FOLDING AND ASSEMBLY OF NICOTINIC ACETYLCHOLINE-RECEPTORS [J].
GELMAN, MS ;
CHANG, WS ;
THOMAS, DY ;
BERGERON, JJM ;
PRIVES, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (25) :15085-15092
[10]   Perspective - Ion channel assembly: Creating structures that function [J].
Green, WN .
JOURNAL OF GENERAL PHYSIOLOGY, 1999, 113 (02) :163-169