Use of Maximum Entropy Modeling in Wildlife Research

被引:523
作者
Baldwin, Roger A. [1 ]
机构
[1] Univ Calif, Kearney Agr Ctr, Parlier, CA 93648 USA
来源
ENTROPY | 2009年 / 11卷 / 04期
关键词
habitat selection models; maxent; species distribution models; wildlife; maximum entropy; SPECIES DISTRIBUTION MODELS; SAMPLE SELECTION BIAS; PSEUDO-ABSENCE DATA; HABITAT MODELS; DISTRIBUTIONS; PERFORMANCE; PREDICTION; TRANSFERABILITY; PREVALENCE; REGRESSION;
D O I
10.3390/e11040854
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Maximum entropy (Maxent) modeling has great potential for identifying distributions and habitat selection of wildlife given its reliance on only presence locations. Recent studies indicate Maxent is relatively insensitive to spatial errors associated with location data, requires few locations to construct useful models, and performs better than other presence-only modeling approaches. Further advances are needed to better define model thresholds, to test model significance, and to address model selection. Additionally, development of modeling approaches is needed when using repeated sampling of known individuals to assess habitat selection. These advancements would strengthen the utility of Maxent for wildlife research and management.
引用
收藏
页码:854 / 866
页数:13
相关论文
共 40 条
  • [1] Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)
    Allouche, Omri
    Tsoar, Asaf
    Kadmon, Ronen
    [J]. JOURNAL OF APPLIED ECOLOGY, 2006, 43 (06) : 1223 - 1232
  • [2] [Anonymous], 2008, SPECIES DISTRIBUTION
  • [3] BALDWIN RA, 2008, THESIS NEW MEXICO ST
  • [4] Den-Site Characteristics of Black Bears in Rocky Mountain National Park, Colorado
    Baldwin, Roger A.
    Bender, Louis C.
    [J]. JOURNAL OF WILDLIFE MANAGEMENT, 2008, 72 (08) : 1717 - 1724
  • [5] Modeling the Geographical Distribution and Fundamental Niches of Cacajao spp. and Chiropotes israelita in Northwestern Amazonia via a Maximum Entropy Algorithm
    Boubli, J. P.
    de Lima, M. G.
    [J]. INTERNATIONAL JOURNAL OF PRIMATOLOGY, 2009, 30 (02) : 217 - 228
  • [6] Burnham K. P., 2002, MODEL SELECTION INFE, DOI [DOI 10.1007/B97636, 10.1007/b97636]
  • [7] COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P46
  • [8] New data on the status and distribution of the bush dog (Speothos venaticus): Evaluating its quality of protection and directing research efforts
    DeMatteo, Karen E.
    Loiselle, Bette A.
    [J]. BIOLOGICAL CONSERVATION, 2008, 141 (10) : 2494 - 2505
  • [9] Novel methods improve prediction of species' distributions from occurrence data
    Elith, J
    Graham, CH
    Anderson, RP
    Dudík, M
    Ferrier, S
    Guisan, A
    Hijmans, RJ
    Huettmann, F
    Leathwick, JR
    Lehmann, A
    Li, J
    Lohmann, LG
    Loiselle, BA
    Manion, G
    Moritz, C
    Nakamura, M
    Nakazawa, Y
    Overton, JM
    Peterson, AT
    Phillips, SJ
    Richardson, K
    Scachetti-Pereira, R
    Schapire, RE
    Soberón, J
    Williams, S
    Wisz, MS
    Zimmermann, NE
    [J]. ECOGRAPHY, 2006, 29 (02) : 129 - 151
  • [10] Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines
    Elith, Jane
    Leathwick, John
    [J]. DIVERSITY AND DISTRIBUTIONS, 2007, 13 (03) : 265 - 275