Parathyroid Hormone (PTH)-Induced Bone Gain Is Blunted in SOST Overexpressing and Deficient Mice

被引:200
作者
Kramer, Ina [1 ]
Loots, Gabriela G. [2 ,3 ,4 ]
Studer, Anne [1 ]
Keller, Hansjoerg [1 ]
Kneissel, Michaela [1 ]
机构
[1] Novartis Inst BioMed Res, Musculoskeletal Dis Area, CH-4002 Basel, Switzerland
[2] Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Livermore, CA USA
[3] Univ Calif Berkeley, Dept Mol & Cell Biol, Div Genet Genom & Dev, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Ctr Integrat Genom, Berkeley, CA 94720 USA
基金
美国国家卫生研究院;
关键词
PTH; SOST; OSTEOCYTES; GENETIC MOUSE MODELS; OSTEOPOROSIS; VAN-BUCHEM-DISEASE; WNT SIGNALING PATHWAY; INTERMITTENT TREATMENT; OSTEOBLASTIC CELLS; SCLEROSTIN; PTH; OSTEOCYTES; DELETION; PROTEIN; RECEPTOR;
D O I
10.1359/jbmr.090730
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Intermittent parathyroid hormone (PTH) treatment is a potent bone anabolic principle that suppresses expression of the bone formation inhibitor Sost. We addressed the relevance of Sost suppression for PTH-induced bone anabolism in vivo using mice with altered Sost gene dosage. Six-month-old Sost overexpressing and 2-month-old Sost deficient male mice and their wild-type littermates were subjected to daily injections of 100 mu g/kg PTH(1-34) or vehicle for a 2-month period. A follow-up study was performed in Sost deficient mice using 40 and 80 mu g/kg PTH(1-34). Animals were sacrificed 4 hours after the final PTH administration and Sost expression in long bone diaphyses was determined by qPCR. Bone changes were analyzed in vivo in the distal femur metaphysis by pQCT and ex vivo in the tibia and lumbar spine by DXA. Detailed ex vivo analyses of the femur were performed by pQCT, mu CT, and histomorphometry. Overexpression of Sost resulted in osteopenia and Sost deletion in high bone mass. As shown before, PTH suppressed Sost in wild-type mice. PTH treatment induced substantial increases in bone mineral density, content, and cortical thickness and in aging wild-type mice also led to cancellous bone gain owing to amplified bone formation rates. PTH-induced bone gain was blunted at all doses and skeletal sites in Sost overexpressing and deficient mice owing to attenuated bone formation rates, whereas bone resorption was not different from that in PTH-treated wild-type controls. These data suggest that suppression of the bone formation inhibitor Sost by intermittent PTH treatment contributes to PTH bone anabolism. (C) 2010 American Society for Bone and Mineral Research.
引用
收藏
页码:178 / 189
页数:12
相关论文
共 50 条
[1]   Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease [J].
Balemans, W ;
Patel, N ;
Ebeling, M ;
Van Hul, E ;
Wuyts, W ;
Lacza, C ;
Dioszegi, M ;
Dikkers, FG ;
Hildering, P ;
Willems, PJ ;
Verheij, JBGM ;
Lindpaintner, K ;
Vickery, B ;
Foernzler, D ;
Van Hul, W .
JOURNAL OF MEDICAL GENETICS, 2002, 39 (02) :91-97
[2]   Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST) [J].
Balemans, W ;
Ebeling, M ;
Patel, N ;
Van Hul, E ;
Olson, P ;
Dioszegi, M ;
Lacza, C ;
Wuyts, W ;
Van den Ende, J ;
Willems, P ;
Paes-Alves, AF ;
Hill, S ;
Bueno, M ;
Ramos, FJ ;
Tacconi, P ;
Dikkers, FG ;
Stratakis, C ;
Lindpaintner, K ;
Vickery, B ;
Foernzler, D ;
Van Hul, W .
HUMAN MOLECULAR GENETICS, 2001, 10 (05) :537-543
[3]   Minireview:: Targeting the Wnt/β-catenin pathway to regulate bone formation in the adult skeleton [J].
Baron, Roland ;
Rawadi, Georges .
ENDOCRINOLOGY, 2007, 148 (06) :2635-2643
[4]   Genetic variability in adult bone density among inbred strains of mice [J].
Beamer, WG ;
Donahue, LR ;
Rosen, CJ ;
Baylink, DJ .
BONE, 1996, 18 (05) :397-403
[5]   Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts - A putative explanation for why intermittent administration is needed for bone anabolism [J].
Bellido, T ;
Ali, AA ;
Plotkin, LI ;
Fu, Q ;
Gubrij, I ;
Roberson, PK ;
Weinstein, RS ;
O'Brien, CA ;
Manolagas, SC ;
Jilka, RL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (50) :50259-50272
[6]   Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: A novel mechanism for hormonal control of osteoblastogenesis [J].
Bellido, T ;
Ali, AA ;
Gubrij, I ;
Plotkin, LI ;
Fu, Q ;
O'Brien, CA ;
Manolagas, SC ;
Jilka, RL .
ENDOCRINOLOGY, 2005, 146 (11) :4577-4583
[7]   SOST/sclerostin, an osteocyte-derived negative regulator of bone formation [J].
Bezooijen, RL ;
ten Dijke, P ;
Papapoulos, SE ;
Löwik, CWGM .
CYTOKINE & GROWTH FACTOR REVIEWS, 2005, 16 (03) :319-327
[8]   Bone anabolic effects of parathyroid hormone are blunted by deletion of the Wnt antagonist secreted frizzled-related protein-1 [J].
Bodine, Peter V. N. ;
Seestaller-Wehr, Laura ;
Kharode, Yogendra P. ;
Bex, Frederick J. ;
Komm, Barry S. .
JOURNAL OF CELLULAR PHYSIOLOGY, 2007, 210 (02) :352-357
[9]   Osteocytes as dynamic multifunctional cells [J].
Bonewald, Lynda F. .
SKELETAL BIOLOGY AND MEDICINE, PT A: ASPECTS OF BONE MORPHOGENESIS AND REMODELING, 2007, 1116 :281-290
[10]  
Bonnick Sydney L, 2006, Clin Cornerstone, V8, P28, DOI 10.1016/S1098-3597(06)80063-3