Activation of p38 MAPK in primary afferent neurons by noxious stimulation and its involvement in the development of thermal hyperalgesia

被引:76
作者
Mizushima, T
Obata, K
Yamanaka, H
Dai, Y
Fukuoka, T
Tokunaga, A
Mashimo, T
Noguchi, K
机构
[1] Hyogo Med Univ, Dept Anat & Neurosci, Nishinomiya, Hyogo 6638501, Japan
[2] Osaka Univ, Sch Med, Dept Anesthesiol, Suita, Osaka 5650871, Japan
关键词
capsaicin thermal stimuli; dorsal root ganglion; p38; ERK; TRPV1;
D O I
10.1016/j.pain.2004.09.038
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Alterations in the intracellular signal transduction pathway in primary afferents may contribute to pain hypersensitivity. We demostrated that very rapid phosphorylation of p38 mitogen-activated protein kinase occurred in dorsal root ganglion (DRG) neurons that were participating in the transmission of noxious signals. Capsaicin injection induced phosphorylated-p38 (p-p38) in small-to-medium diameter sensory neurons with a peak at 2 min after capsaicin injection. Furthermore, we examined the p-p38 labeling ill the DRG after noxious thermal stimuli and found a stimulus intensity-dependent increase in labeled cell size and the number of activated neurons. Most of these p-p38-immunoreactive (IR) neurons were small- and medium-sized neurons, which coexpressed transient receptor potential ion channel TRPV1 and phosphorylated-extracellular signal-regulated protein kinase. Intrathecal administration of the p38 inhibitor. FR 167653. reversed the thermal hyperalgesia produced by the capsaicin injection. Inhibition of p38 activation was confirmed by the decrease in the number of p-p38-IR neurons in the DRG following capsaicin injection. Taken together. these findings suggest that the activation of p38 pathways in primary afferents by noxious stimulation in vivo may be, at least in part, correlated with functional activity, and further, involved in the development of thermal hyperalgesia. (C) 2004 Intemational Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 72 条
[1]   Nociceptor sensitization by extracellular signal-regulated kinases [J].
Aley, KO ;
Martin, A ;
McMahon, T ;
Mok, J ;
Levine, JD ;
Messing, RO .
JOURNAL OF NEUROSCIENCE, 2001, 21 (17) :6933-6939
[2]   Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2 [J].
Amaya, F ;
Decosterd, I ;
Samad, TA ;
Plumpton, C ;
Tate, S ;
Mannion, RJ ;
Costigan, M ;
Woolf, CJ .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2000, 15 (04) :331-342
[3]   The MAPK cascade is required for mammalian associative learning [J].
Atkins, CM ;
Selcher, JC ;
Petraitis, JJ ;
Trzaskos, JM ;
Sweatt, JD .
NATURE NEUROSCIENCE, 1998, 1 (07) :602-609
[4]   Nerve growth factor modulates the activation status and fast axonal transport of ERK 1/2 in adult nociceptive neurones [J].
Averill, S ;
Delcroix, JD ;
Michael, GJ ;
Tomlinson, DR ;
Fernyhough, P ;
Priestley, JV .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2001, 18 (02) :183-196
[5]   IDENTIFICATION OF P42 MITOGEN-ACTIVATED PROTEIN-KINASE AS A TYROSINE KINASE SUBSTRATE ACTIVATED BY MAXIMAL ELECTROCONVULSIVE SHOCK IN HIPPOCAMPUS [J].
BARABAN, JM ;
FIORE, RS ;
SANGHERA, JS ;
PADDON, HB ;
PELECH, SL .
JOURNAL OF NEUROCHEMISTRY, 1993, 60 (01) :330-336
[6]  
Bennett DLH, 1998, J NEUROSCI, V18, P3059
[7]   Dual MAP kinase pathways mediate opposing forms of long-term plasticity at CA3-CA1 synapses [J].
Bolshakov, VY ;
Carboni, L ;
Cobb, MH ;
Siegelbaum, SA ;
Belardetti, F .
NATURE NEUROSCIENCE, 2000, 3 (11) :1107-1112
[8]   Impaired nociception and pain sensation in mice lacking the capsaicin receptor [J].
Caterina, MJ ;
Leffler, A ;
Malmberg, AB ;
Martin, WJ ;
Trafton, J ;
Petersen-Zeitz, KR ;
Koltzenburg, M ;
Basbaum, AI ;
Julius, D .
SCIENCE, 2000, 288 (5464) :306-313
[9]   The capsaicin receptor: a heat-activated ion channel in the pain pathway [J].
Caterina, MJ ;
Schumacher, MA ;
Tominaga, M ;
Rosen, TA ;
Levine, JD ;
Julius, D .
NATURE, 1997, 389 (6653) :816-824
[10]   Contribution of sensitized P2X receptors in inflamed tissue to the mechanical hypersensitivity revealed by phosphorylated ERK in DRG neurons [J].
Dai, Y ;
Fukuoka, T ;
Wang, H ;
Yamanaka, H ;
Obata, K ;
Tokunaga, A ;
Noguchi, K .
PAIN, 2004, 108 (03) :258-266