Measurement of red blood cell mechanics during morphological changes

被引:323
作者
Park, YongKeun [2 ]
Best, Catherine A. [3 ]
Badizadegan, Kamran [2 ,4 ,5 ]
Dasari, Ramachandra R. [2 ]
Feld, Michael S. [2 ]
Kuriabova, Tatiana [6 ]
Henle, Mark L. [7 ]
Levine, Alex J. [1 ]
Popescu, Gabriel [2 ,8 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] MIT, George R Harrison Spect Lab, Cambridge, MA 02139 USA
[3] Univ Illinois, Coll Med, Urbana, IL 61801 USA
[4] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02114 USA
[5] Massachusetts Gen Hosp, Boston, MA 02114 USA
[6] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[7] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[8] Univ Illinois, Quantitat Light Imaging Lab, Dept Elect & Comp Engn, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
membrane dynamics; microrheology; quantitative phase imaging; LIPID-BILAYER MEMBRANES; HUMAN-ERYTHROCYTES; PLASMODIUM-FALCIPARUM; DIFFRACTION PHASE; ELASTIC NETWORKS; OPTICAL TWEEZERS; TEMPERATURE; MICROSCOPY; DYNAMICS; VESICLES;
D O I
10.1073/pnas.0909533107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The human red blood cell (RBC) membrane, a fluid lipid bilayer tethered to an elastic 2D spectrin network, provides the principal control of the cell's morphology and mechanics. These properties, in turn, influence the ability of RBCs to transport oxygen in circulation. Current mechanical measurements of RBCs rely on external loads. Here we apply a noncontact optical interferometric technique to quantify the thermal fluctuations of RBC membranes with 3 nm accuracy over a broad range of spatial and temporal frequencies. Combining this technique with a new mathematical model describing RBC membrane undulations, we measure the mechanical changes of RBCs as they undergo a transition from the normal discoid shape to the abnormal echinocyte and spherical shapes. These measurements indicate that, coincident with this morphological transition, there is a significant increase in the membrane's shear, area, and bending moduli. This mechanical transition can alter cell circulation and impede oxygen delivery.
引用
收藏
页码:6731 / 6736
页数:6
相关论文
共 40 条
[11]   VISCOELASTIC PROPERTIES OF ERYTHROCYTE-MEMBRANES IN HIGH-FREQUENCY ELECTRIC-FIELDS [J].
ENGELHARDT, H ;
GAUB, H ;
SACKMANN, E .
NATURE, 1984, 307 (5949) :378-380
[12]   PERCOLATION ON ELASTIC NETWORKS - NEW EXPONENT AND THRESHOLD [J].
FENG, S ;
SEN, PN .
PHYSICAL REVIEW LETTERS, 1984, 52 (03) :216-219
[13]   Fluctuation spectrum of fluid membranes coupled to an elastic meshwork:: Jump of the effective surface tension at the mesh size -: art. no. 018102 [J].
Fournier, JB ;
Lacoste, D ;
Raphaël, E .
PHYSICAL REVIEW LETTERS, 2004, 92 (01) :4
[14]   Cytoskeleton confinement and tension of red blood cell membranes [J].
Gov, N ;
Zilman, AG ;
Safran, S .
PHYSICAL REVIEW LETTERS, 2003, 90 (22) :4
[15]   LIPID AND PROTEIN-COMPOSITION OF EXOVESICLES RELEASED FROM HUMAN ERYTHROCYTES FOLLOWING TREATMENT WITH AMPHIPHILES [J].
HAGERSTRAND, H ;
ISOMAA, B .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1994, 1190 (02) :409-415
[16]   TEMPERATURE-DEPENDENCE OF THE VISCOELASTIC RECOVERY OF RED-CELL MEMBRANE [J].
HOCHMUTH, RM ;
BUXBAUM, KL ;
EVANS, EA .
BIOPHYSICAL JOURNAL, 1980, 29 (01) :177-182
[17]  
Hubbard A.T., 2002, ENCY SURFACE COLLOID
[18]   Hydrodynamic damping of membrane thermal fluctuations near surfaces imaged by fluorescence interference microscopy [J].
Kaizuka, Y ;
Groves, JT .
PHYSICAL REVIEW LETTERS, 2006, 96 (11) :1-4
[19]   Temperature transition of human hemoglobin at body temperature: Effects of calcium [J].
Kelemen, C ;
Chien, S ;
Artmann, GM .
BIOPHYSICAL JOURNAL, 2001, 80 (06) :2622-2630
[20]   Nanorheology of viscoelastic shells: Applications to viral capsids [J].
Kuriabova, Tatiana ;
Levine, Alex J. .
PHYSICAL REVIEW E, 2008, 77 (03)