Effect of modified montmorillonite on biodegradable PHB nanocomposites

被引:110
作者
Botana, Adrian [1 ]
Mollo, Mariana [1 ]
Eisenberg, Patricia [1 ]
Torres Sanchez, Rosa M. [1 ]
机构
[1] INTI Plast, RA-1650 San Martin, Argentina
关键词
PHB; Nanocomposites reinforcement; Organo-montmorillonite; THERMAL/MECHANICAL PROPERTIES; SILICATE NANOCOMPOSITES; THERMAL-DEGRADATION; MELT INTERCALATION; LAYERED SILICATES; SURFACE-AREA; ORGANOCLAYS; COMPOSITES; MORPHOLOGY;
D O I
10.1016/j.clay.2009.11.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer nanocomposites, based on a bacterial biodegradable thermoplastic polyester. poly(hydroxybutyrate) (PHB), and two commercial montmorillonites (MT), Na-M (MT) and 30B-M (organically modified MT), were prepared by melt-mixing technique at 165 degrees C. Both clays minerals were characterized by morphology, crystallochemical parameters, and thermal stability. Lower specific surface area (determined by adsorption methods) values were found for 30B-M. The apparent particle size from light scattering measurements, scanning electron microscopy observations, and crystallite size (determined from XRD patterns) of 30B-M indicated a higher degree of particles exfoliation than of Na-M. The nanocomposites PHBNa and PHB30B were characterized by differential scanning calorimetry (DSC), polarized optical microscopy (POM), X-ray diffraction (XRD), transmission electron microscopy (TEM), mechanical properties, and burning behaviour. Intercalation/exfoliation observed by TEM and XRD was more pronounced for PHB30B than PHBNa, indicating the better compatibility of 30B-M with the PHB matrix. An increase in crystallization temperature and a decrease in spherullites size were observed for PHB30B. The intercalation/exfoliation observed by TEM and structure XRD increased the moduli of the nanocomposites. The burning behaviour of PHB30B was influenced by the aggregation of the clay mineral particles. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:263 / 270
页数:8
相关论文
共 51 条
[1]  
Acemana S, 1999, THERMOCHIM ACTA, V341, P349
[2]   Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials [J].
Alexandre, Michael ;
Dubois, Philippe .
Materials Science and Engineering: R: Reports, 2000, 28 (1-2) :1-63
[3]   Effect of pH in an aqueous medium on the surface area, pore size distribution, density, and porosity of montmorillonite [J].
Altin, O ;
Ozbelge, HÖ ;
Dogu, T .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1999, 217 (01) :19-27
[4]  
[Anonymous], 2002, J. Argentine Chem. Soc.
[5]   Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ε-caprolactone], and poly[(S)-lactide] [J].
Aoyagi, Y ;
Yamashita, K ;
Doi, Y .
POLYMER DEGRADATION AND STABILITY, 2002, 76 (01) :53-59
[6]   Poly(ε-caprolactone)-based nanocomposites:: Influence of compatibilization on properties of poly(ε-caprolactone)-silica nanocomposites [J].
Avella, M ;
Bondioli, F ;
Cannillo, V ;
Di Pace, E ;
Errico, ME ;
Ferrari, AM ;
Focher, B ;
Malinconico, M .
COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (7-8) :886-894
[7]   Hydration of a Na+-montmorillonite studied by thermally stimulated depolarization current [J].
Belarbi, H. ;
Haouzi, A. ;
Douillard, J. M. ;
Giuntini, J. C. ;
Henn, F. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 308 (01) :216-221
[8]   Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites [J].
Berta, M ;
Lindsay, C ;
Pans, G ;
Camino, G .
POLYMER DEGRADATION AND STABILITY, 2006, 91 (05) :1179-1191
[9]   Structure and properties of PHA/clay nano-biocomposites prepared by melt intercalation [J].
Bordes, Perrine ;
Pollet, Eric ;
Bourbigot, Serge ;
Averous, Luc .
MACROMOLECULAR CHEMISTRY AND PHYSICS, 2008, 209 (14) :1473-1484
[10]   Effect of clay organomodifiers on degradation of polyhydroxyalkanoates [J].
Bordes, Perrine ;
Hablot, Elodie ;
Pollet, Eric ;
Averous, Luc .
POLYMER DEGRADATION AND STABILITY, 2009, 94 (05) :789-796