RNA expression analysis using a 30 base pair resolution Escherichia coli genome array

被引:276
作者
Selinger, DW
Cheung, KJ
Mei, R
Johansson, EM
Richmond, CS
Blattner, FR
Lockhart, DJ
Church, GM
机构
[1] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
[2] Harvard Coll, Cambridge, MA 02138 USA
[3] Affymetrix Inc, Santa Clara, CA USA
[4] Novartis Res Fdn, Genom Inst, San Diego, CA 92121 USA
[5] Univ Wisconsin, Genet Lab, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Escherichia coli; stationary phase; gene expression; functional genomics; DNA chips; oligonucleotide arrays; microarrays;
D O I
10.1038/82367
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We have developed a high-resolution "genome array" for the study of gene expression and regulation in Escherichia coli. This array contains on average one 25-mer oligonucleotide probe per 30 base pairs over the entire genome, with one every 6 bases for the intergenic regions and every 60 bases for the 4,290 open reading frames (ORFs). Twofold concentration differences can be detected at levels as low as 0.2 messenger RNA (mRNA) copies per cell, and differences can be seen over a dynamic range of three orders of magnitude. In rich medium we detected transcripts for 97% and 87% of the ORFs in stationary and log phases, respectively. We found that 1,529 transcripts were differentially expressed under these conditions. As expected, genes involved in translation were expressed at higher levels in log phase, whereas many genes known to be involved in the starvation response were expressed at higher levels in stationary phase. Many previously unrecognized growth phase-regulated genes were identified, such as a putative receptor (b0836) and a 30S ribosomal protein subunit (S22), both of which are highly upregulated in stationary phase. Transcription of between 3,000 and 4,000 predicted ORFs was observed from the antisense strand, indicating that most of the genome is transcribed at a detectable level. Examples are also presented for high-resolution array analysis of transcript start and stop sites and RNA secondary structure.
引用
收藏
页码:1262 / 1268
页数:7
相关论文
共 40 条
[1]   Systematic management and analysis of yeast gene expression data [J].
Aach, J ;
Rindone, W ;
Church, GM .
GENOME RESEARCH, 2000, 10 (04) :431-445
[2]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[3]   Quantifying DNA-protein interactions by double-stranded DNA arrays [J].
Bulyk, ML ;
Gentalen, E ;
Lockhart, DJ ;
Church, GM .
NATURE BIOTECHNOLOGY, 1999, 17 (06) :573-577
[4]   POLY(A) RNA IN ESCHERICHIA-COLI - NUCLEOTIDE-SEQUENCE AT THE JUNCTION OF THE LPP TRANSCRIPT AND THE POLYADENYLATE MOIETY [J].
CAO, GJ ;
SARKAR, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (16) :7546-7550
[5]   STRUCTURE AND FUNCTION OF A BACTERIAL MESSENGER-RNA STABILIZER - ANALYSIS OF THE 5' UNTRANSLATED REGION OF OMPA MESSENGER-RNA [J].
CHEN, LH ;
EMORY, SA ;
BRICKER, AL ;
BOUVET, P ;
BELASCO, JG .
JOURNAL OF BACTERIOLOGY, 1991, 173 (15) :4578-4586
[6]   GLOBAL REGULATION OF GENE-EXPRESSION IN ESCHERICHIA-COLI [J].
CHUANG, SE ;
DANIELS, DL ;
BLATTNER, FR .
JOURNAL OF BACTERIOLOGY, 1993, 175 (07) :2026-2036
[7]   Bacterial transcript imaging by hybridization of total RNA to oligonucleotide arrays [J].
de Saizieu, A ;
Certa, U ;
Warrington, J ;
Gray, C ;
Keck, W ;
Mous, J .
NATURE BIOTECHNOLOGY, 1998, 16 (01) :45-48
[8]   A SIMPLIFIED FORMALDEHYDE FIXATION AND IMMUNOPRECIPITATION TECHNIQUE FOR STUDYING PROTEIN DNA INTERACTIONS [J].
DEDON, PC ;
SOULTS, JA ;
ALLIS, CD ;
GOROVSKY, MA .
ANALYTICAL BIOCHEMISTRY, 1991, 197 (01) :83-90
[9]  
DeRisi J, 1996, NAT GENET, V14, P457
[10]   Exploring the metabolic and genetic control of gene expression on a genomic scale [J].
DeRisi, JL ;
Iyer, VR ;
Brown, PO .
SCIENCE, 1997, 278 (5338) :680-686