A protocol for generating a high-quality genome-scale metabolic reconstruction

被引:1158
作者
Thiele, Ines [1 ]
Palsson, Bernhard O. [1 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
IN-SILICO MODELS; ESCHERICHIA-COLI; NETWORK ANALYSIS; SUBCELLULAR-LOCALIZATION; INFORMATION-SYSTEM; DATABASE RESOURCES; HIGH-THROUGHPUT; NATIONAL-CENTER; ANNOTATION; BACTERIAL;
D O I
10.1038/nprot.2009.203
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Network reconstructions are a common denominator in systems biology. Bottom-up metabolic network reconstructions have been developed over the last 10 years. These reconstructions represent structured knowledge bases that abstract pertinent information on the biochemical transformations taking place within specific target organisms. The conversion of a reconstruction into a mathematical format facilitates a myriad of computational biological studies, including evaluation of network content, hypothesis testing and generation, analysis of phenotypic characteristics and metabolic engineering. To date, genome-scale metabolic reconstructions for more than 30 organisms have been published and this number is expected to increase rapidly. However, these reconstructions differ in quality and coverage that may minimize their predictive potential and use as knowledge bases. Here we present a comprehensive protocol describing each step necessary to build a high-quality genome-scale metabolic reconstruction, as well as the common trials and tribulations. Therefore, this protocol provides a helpful manual for all stages of the reconstruction process.
引用
收藏
页码:93 / 121
页数:29
相关论文
共 102 条
[41]   Multidimensional annotation of the Escherichia coli K-12 genome [J].
Karp, Peter D. ;
Keseler, Ingrid M. ;
Shearer, Alexander ;
Latendresse, Mario ;
Krummenacker, Markus ;
Paley, Suzanne M. ;
Paulsen, Ian ;
Collado-Vides, Julio ;
Gama-Castro, Socorro ;
Peralta-Gil, Martin ;
Santos-Zavaleta, Alberto ;
Penaloza-Spinola, Monica I. ;
Bonavides-Martinez, Cesar ;
Ingraham, John .
NUCLEIC ACIDS RESEARCH, 2007, 35 (22) :7577-7590
[42]  
Karp Peter D, 2002, Bioinformatics, V18 Suppl 1, pS225
[43]   FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps [J].
Klamt, S ;
Stelling, J ;
Ginkel, M ;
Gilles, ED .
BIOINFORMATICS, 2003, 19 (02) :261-269
[44]   Structural and functional analysis of cellular networks with CellNetAnalyzer [J].
Klamt, Steffen ;
Saez-Rodriguez, Julio ;
Gilles, Ernst D. .
BMC SYSTEMS BIOLOGY, 2007, 1
[45]   Bayesian-based selection of metabolic objective functions [J].
Knorr, Andrea L. ;
Jain, Rishi ;
Srivastava, Ranjan .
BIOINFORMATICS, 2007, 23 (03) :351-357
[46]   Systematic assignment of thermodynamic constraints in metabolic network models [J].
Kuemmel, Anne ;
Panke, Sven ;
Heinemann, Matthias .
BMC BIOINFORMATICS, 2006, 7 (1)
[47]   Optimization based automated curation of metabolic reconstructions [J].
Kumar, Vinay Satish ;
Dasika, Madhukar S. ;
Maranas, Costas D. .
BMC BIOINFORMATICS, 2007, 8 (1)
[48]   MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis [J].
Lee, DY ;
Yun, H ;
Park, S ;
Lee, SY .
BIOINFORMATICS, 2003, 19 (16) :2144-2146
[49]   Systems-level analysis of genome-scale in silico metabolic models using MetaFluxNet [J].
Lee, SY ;
Woo, HM ;
Lee, DY ;
Choi, HS ;
Kim, TY ;
Yun, H .
BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, 2005, 10 (05) :425-431
[50]   Identification of Potential Pathway Mediation Targets in Toll-like Receptor Signaling [J].
Li, Fan ;
Thiele, Ines ;
Jamshidi, Neema ;
Palsson, Bernhard O. .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (02)