Coregulators and chromatin remodeling in transcriptional control

被引:25
作者
Kumar, R
Wang, RA
Barnes, CJ
机构
[1] Univ Texas, MD Anderson Canc Ctr, Dept Mol & Cellular Oncol, Houston, TX 77030 USA
[2] Univ Texas, MD Anderson Canc Ctr, Dept Biochem & Mol & Biol, Houston, TX 77030 USA
关键词
signaling; coregulators; transcription;
D O I
10.1002/mc.20056
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Despite many years of investigation by numerous investigators, transcriptional regulatory control remains an intensely investigated and continuously evolving field of research. Transcriptional regulation is dependent not only on transcription factor activation and chromatin remodeling, but also on a host of transcription factor coregulators-coactivators and corepressors. In addition to transcription factor activation and chromatin changes, there is an expanding array of additional modifications that titrate transcriptional regulation for the specific conditions of a particular cell type, organ system, and developmental stage, and such events are likely to be greatly influenced by upstream signaling cascades. Here, we will briefly review the highlights and perspectives of chromatin remodeling and transcription controls as affected by cofactor availability, cellular energy state, relative ratios of reducing equivalents, and upstream signaling. We also present the C-terminal binding protein (CtBP) as a novel nuclear receptor (NR) coregulator, which exemplifies the integration of a number of transcriptional regulatory controls. (C) 2004 Wiley-Liss, Inc.
引用
收藏
页码:221 / 230
页数:10
相关论文
共 99 条
[1]   Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53 [J].
An, W ;
Kim, J ;
Roeder, RG .
CELL, 2004, 117 (06) :735-748
[2]   Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels [J].
Anderson, RM ;
Bitterman, KJ ;
Wood, JG ;
Medvedik, O ;
Cohen, H ;
Lin, SS ;
Manchester, JK ;
Gordon, JI ;
Sinclair, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (21) :18881-18890
[3]   Estrogen receptor activation at serine 305 is sufficient to upregulate cyclin D1 in breast cancer cells [J].
Balasenthil, S ;
Barnes, CJ ;
Rayala, SK ;
Kumar, R .
FEBS LETTERS, 2004, 567 (2-3) :243-247
[4]   Functional interactions between the estrogen receptor coactivator PELP1/MNAR and retinoblastoma protein [J].
Balasenthil, S ;
Vadlamudi, RK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (24) :22119-22127
[5]   Functional inactivation of a transcriptional corepressor by a signaling kinase [J].
Barnes, CJ ;
Vadlamudi, RK ;
Mishra, SK ;
Jacobson, RH ;
Li, F ;
Kumar, R .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (08) :622-628
[6]   Neurodegenerative diseases and oxidative stress [J].
Barnham, KJ ;
Masters, CL ;
Bush, AI .
NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (03) :205-214
[7]   Biology of the p21-activated kinases [J].
Bokoch, GM .
ANNUAL REVIEW OF BIOCHEMISTRY, 2003, 72 :743-781
[8]   Mi-2/NuRD: multiple complexes for many purposes [J].
Bowen, NJ ;
Fujita, N ;
Kajita, M ;
Wade, PA .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2004, 1677 (1-3) :52-57
[9]   The basic helix-loop-helix-PAS protein ARNT functions as a potent coactivator of estrogen receptor-dependent transcription [J].
Brunnberg, S ;
Pettersson, K ;
Rydin, E ;
Matthews, J ;
Hanberg, A ;
Pongratz, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (11) :6517-6522
[10]   Role of CBP/P300 in nuclear receptor signalling [J].
Chakravarti, D ;
LaMorte, VJ ;
Nelson, MC ;
Nakajima, T ;
Schulman, IG ;
Juguilon, H ;
Montminy, M ;
Evans, RM .
NATURE, 1996, 383 (6595) :99-103