On spatial Lyapunov exponents and spatial chaos

被引:25
作者
Liu, ST [1 ]
Chen, GR
机构
[1] S China Univ Technol, Coll Automat Sci & Engn, Inst Syst Sci, Guangzhou 510641, Peoples R China
[2] Shandong Univ, Coll Control Sci & Engn, Jinan 250061, Peoples R China
[3] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2003年 / 13卷 / 05期
关键词
spatial Lyapunov exponent; spatial chaos; generalized 2D logistic system; CML model;
D O I
10.1142/S0218127403007126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the periodic orbits, spatial Lyapunov exponents, and stability of spatially periodic orbits of the general 2D Logistic system x(m+1,n) + ax(m,n+1) = f(mu, (1 + a)x(mn)), where a is a real constant and mu is a parameter. The existence of spatial chaos in the sense of Li and Yorke is proved using the Marotto theorem. These results extend the corresponding results in the 1D Logistic system x(m+1,n0) = f(mu, x(m,n0)) , where n(0) is a fixed integer. These results also improve some existing results of the 2D coupled map lattice (CML) model x(m+1,n) = (1 - epsilon)f(x(mn)) + (epsilon)/(2)[f(x(m,n-1)) + f(x(m,n+1))], 2 where epsilon > 0 is the coupling constant.
引用
收藏
页码:1163 / 1181
页数:19
相关论文
共 32 条
[1]   SYNCHRONIZATION OF CHAOTIC ORBITS - THE EFFECT OF A FINITE-TIME STEP [J].
AMRITKAR, RE ;
GUPTE, N .
PHYSICAL REVIEW E, 1993, 47 (06) :3889-3895
[2]  
Chen G., 1998, CHAOS ORDER PERSPECT
[3]  
Chen G., 1999, CONTROLLING CHAOS BI
[4]   On spatial periodic orbits and spatial chaos [J].
Chen, GR ;
Liu, ST .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (04) :935-941
[5]  
Devaney R, 1987, An introduction to chaotic dynamical systems, DOI 10.2307/3619398
[6]  
Hao B. L., 1989, ELEMENTARY SYMBOLIC
[7]   Synchronization of spatiotemporal chaos and its applications [J].
Hu, G ;
Xiao, JH ;
Yang, JZ ;
Xie, FG ;
Qu, ZL .
PHYSICAL REVIEW E, 1997, 56 (03) :2738-2746
[8]  
JAN FJ, 1992, INTRO CHAOS COHERENC
[9]  
KANEKO K, 1996, COMPLEX SYSTEMS CHAO
[10]  
Kelley W. G., 1991, Difference equations: An introduction with applications