Molecular potential energy surfaces by interpolation in Cartesian coordinates

被引:85
作者
Thompson, KC [1 ]
Jordan, MJT [1 ]
Collins, MA [1 ]
机构
[1] Australian Natl Univ, Res Sch Chem, Canberra, ACT 0200, Australia
关键词
D O I
10.1063/1.475419
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a new method for expressing a molecular potential energy surface (PES) as an interpolation of local Taylor expansions. By using only Cartesian coordinates for the atomic positions, this method avoids redundancy problems associated with the use of internal coordinates. The correct translation, rotation, inversion, and permutation invariance are incorporated in the PES via the interpolation method itself. The method is most readily employed for bound molecules or clusters and is demonstrated by application to the vibrational motion of acetylene. (C) 1998 American Institute of Physics.
引用
收藏
页码:564 / 578
页数:15
相关论文
共 38 条
[31]   A DUAL-LEVEL SHEPARD INTERPOLATION METHOD FOR GENERATING POTENTIAL-ENERGY SURFACES FOR DYNAMICS CALCULATIONS [J].
NGUYEN, KA ;
ROSSI, I ;
TRUHLAR, DG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (13) :5522-5530
[32]   Potential energy surfaces for polyatomic reactions by interpolation with reaction path weight: CH2OH+->CHO++H-2 reaction [J].
Rhee, YM ;
Lee, TG ;
Park, SC ;
Kim, MS .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (03) :1003-1012
[33]   A QUASI-CLASSICAL TRAJECTORY STUDY OF PRODUCT VIBRATIONAL DISTRIBUTIONS IN THE OH+H-2-]H2O+H REACTION [J].
SCHATZ, GC ;
ELGERSMA, H .
CHEMICAL PHYSICS LETTERS, 1980, 73 (01) :21-25
[34]  
Thompson K., UNPUB
[35]   Molecular potential-energy surfaces by interpolation: Further refinements [J].
Thompson, KC ;
Collins, MA .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1997, 93 (05) :871-878
[36]  
Truhlar D.G., 1981, Potential Energy Surfaces and Dynamics Calculations
[37]   MORATE - A PROGRAM FOR DIRECT DYNAMICS CALCULATIONS OF CHEMICAL-REACTION RATES BY SEMIEMPIRICAL MOLECULAR-ORBITAL THEORY [J].
TRUONG, TN ;
LU, DH ;
LYNCH, GC ;
LIU, YP ;
MELISSAS, VS ;
STEWART, JJP ;
STECKLER, R ;
GARRETT, BC ;
ISAACSON, AD ;
GONZALEZLAFONT, A ;
RAI, SN ;
HANCOCK, GC ;
JOSEPH, T ;
TRUHLAR, DG .
COMPUTER PHYSICS COMMUNICATIONS, 1993, 75 (1-2) :143-159
[38]  
WIGNER EP, 1959, GROUP THEORY, P95