Optimum Reconfiguration of Droop-Controlled Islanded Microgrids

被引:80
作者
Abdelaziz, Morad Mohamed Abdelmageed [1 ]
Farag, Hany E. [2 ]
El-Saadany, Ehab F. [3 ]
机构
[1] Western Washington Univ, Engn & Design, Bellingham, WA 98225 USA
[2] York Univ, Elect Engn & Comp Sci, Toronto, ON M3J 1P3, Canada
[3] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
关键词
Distributed generation; distribution network reconfiguration; droop control; islanded microgrids; renewable energy resources; ENERGY MANAGEMENT; NETWORK RECONFIGURATION; POWER-FLOW; MINIMIZATION; GENERATORS; STABILITY; SYSTEMS;
D O I
10.1109/TPWRS.2015.2456154
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new formulation for the optimum reconfiguration of islanded microgrid (IMG) systems. The reconfiguration problem is casted as a multi-objective optimization problem, in order to: 1) minimize the IMG fuel consumption in the operational planning horizon for which islanded operation is planned; 2) ensure the IMG capability to feed the maximum possible demand by enhancing its voltage instability proximity index taken over all the states at which the islanded system may reside; and 3) minimize the relevant switching operation costs. The proposed problem formulation takes into consideration the system's operational constraints in all operating conditions based on the consideration of the uncertainty associated with renewable resources output power and load variability. Moreover, the proposed formulation accounts for droop controlled IMG special operational characteristics as well as the availability/unavailability of a supervisory microgrid central controller (MGCC). The formulated problem is solved using non-dominated sorting genetic algorithm II (NSGA-II). MATLAB environment has been used to test and validate the proposed problem formulation. The results show that the implementation of appropriate IMG reconfiguration problem formulations will enhance the performance of IMG systems and facilitate a successful integration of the microgrid concept in distribution networks.
引用
收藏
页码:2144 / 2153
页数:10
相关论文
共 34 条
[1]   Maximum loadability consideration in droop-controlled islanded microgrids optimal power flow [J].
Abdelaziz, Morad M. A. ;
El-Saadany, E. F. .
ELECTRIC POWER SYSTEMS RESEARCH, 2014, 106 :168-179
[2]   Optimum Droop Parameter Settings of Islanded Microgrids With Renewable Energy Resources [J].
Abdelaziz, Morad Mohamed Abdelmageed ;
Farag, Hany E. ;
El-Saadany, Ehab F. .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2014, 5 (02) :434-445
[3]   A Novel and Generalized Three-Phase Power Flow Algorithm for Islanded Microgrids Using a Newton Trust Region Method [J].
Abdelaziz, Morad Mohamed Abdelmageed ;
Farag, Hany E. ;
El-Saadany, Ehab F. ;
Mohamed, Yasser Abdel-Rady I. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (01) :190-201
[4]  
[Anonymous], 2011, IEEE GUID DES OP INT
[5]   Adequacy Evaluation of Distribution System Including Wind/Solar DG During Different Modes of Operation [J].
Atwa, Y. M. ;
El-Saadany, E. F. ;
Salama, M. M. A. ;
Seethapathy, R. ;
Assam, M. ;
Conti, S. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2011, 26 (04) :1945-1952
[6]   Optimal Renewable Resources Mix for Distribution System Energy Loss Minimization [J].
Atwa, Y. M. ;
El-Saadany, E. F. ;
Salama, M. M. A. ;
Seethapathy, R. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2010, 25 (01) :360-370
[7]   Energy Management in Autonomous Microgrid Using Stability-Constrained Droop Control of Inverters [J].
Barklund, E. ;
Pogaku, Nagaraju ;
Prodanovic, Milan ;
Hernandez-Aramburo, C. ;
Green, Tim C. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2008, 23 (05) :2346-2352
[8]   Planned Scheduling for Economic Power Sharing in a CHP-Based Micro-Grid [J].
Basu, Ashoke Kumar ;
Bhattacharya, Aniruddha ;
Chowdhury, Sunetra ;
Chowdhury, S. P. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (01) :30-38
[9]   Overview of control and grid synchronization for distributed power generation systems [J].
Blaabjerg, Frede ;
Teodorescu, Remus ;
Liserre, Marco ;
Timbus, Adrian V. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2006, 53 (05) :1398-1409
[10]   An Efficient Codification to Solve Distribution Network Reconfiguration for Loss Reduction Problem [J].
Carreno, Edgar Manuel ;
Romero, Ruben ;
Padilha-Feltrin, Antonio .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2008, 23 (04) :1542-1551