Asymptotic integrated mean square error of the hybrid spline estimator of the regression

被引:4
作者
Cardot, H [1 ]
Diack, CAT [1 ]
机构
[1] Univ Toulouse 3, Lab Stat & Probabil, CNRS, UMR C5583, F-31062 Toulouse, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 326卷 / 05期
关键词
D O I
10.1016/S0764-4442(98)85017-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we consider the estimation of a smooth regression function, belonging to C-m[0,1], by hybrid splines. We give the asymptotic behavior of the integrated mean square error by considering two different assumptions on the noise. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:615 / 618
页数:4
相关论文
共 8 条
[1]   ASYMPTOTIC INTEGRATED MEAN-SQUARE ERROR USING LEAST-SQUARES AND BIAS MINIMIZING SPLINES [J].
AGARWAL, GG ;
STUDDEN, WJ .
ANNALS OF STATISTICS, 1980, 8 (06) :1307-1325
[2]   Simultaneous non-parametric regressions of unbalanced longitudinal data [J].
Besse, PC ;
Cardot, H ;
Ferraty, F .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 24 (03) :255-270
[3]   REGRESSION FUNCTION ESTIMATION FROM DEPENDENT OBSERVATIONS [J].
BURMAN, P .
JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 36 (02) :263-279
[4]  
CARDOT H, 1997, PUBL LAB STAT PROBAB, V397
[5]  
DIACK C, IN PRESS J NONPARAME
[6]   MONOTONE SMOOTHING WITH APPLICATION TO DOSE-RESPONSE CURVES AND THE ASSESSMENT OF SYNERGISM [J].
KELLY, C ;
RICE, J .
BIOMETRICS, 1990, 46 (04) :1071-1085
[7]  
Schumaker L., 1981, SPLINE FUNCTIONS BAS
[8]  
Wahba G, 1990, SPLINE MODELS OBSERV