Stability of bacteriorhodopsin α-helices and loops analyzed by single-molecule force spectroscopy

被引:137
作者
Müller, DJ
Kessler, M
Oesterhelt, F
Möller, C
Oesterhelt, D
Gaub, H
机构
[1] Univ Munich, Ctr Nano Sci, Sekt Phys, D-80799 Munich, Germany
[2] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
[3] Tech Univ Dresden, BIOTEC, D-01602 Dresden, Germany
关键词
D O I
10.1016/S0006-3495(02)75358-7
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The combination of high-resolution atomic force microscopy imaging and single-molecule force spectroscopy allows the identification, selection, and mechanical investigation of individual proteins. In a recent paper we had used this technique to unfold and extract single bacteriorhodopsins (BRs) from native purple membrane patches. We show that subsets of the unfolding spectra can be classified and grouped to reveal detailed insight into the individualism of the unfolding pathways. We have further developed this technique and analysis to report here on the influence of pH effects and local mutations on the stability of individual structural elements of BR against mechanical unfolding. We found that, although the seven transmembrane a-helices predominantly unfold in pairs, each of the helices may also unfold individually and in some cases even only partially. Additionally, intermittent states in the unfolding process were found, which are associated with the stretching of the extracellular loops connecting the a-helices. This suggests that polypeptide loops potentially act as a barrier to unfolding and contribute significantly to the structural stability of BR. Chemical removal of the Schiff base, the covalent linkage of the photoactive retinal to the helix G, resulted in a predominantly two-step unfolding of this helix. It is concluded that the covalent linkage of the retinal to helix G stabilizes the structure of BR. Trapping mutant D96N in the M state of the proton pumping photocycle did not affect the unfolding barriers of BR.
引用
收藏
页码:3578 / 3588
页数:11
相关论文
共 56 条
[1]   THE PROBABLE ARRANGEMENT OF THE HELICES IN G-PROTEIN-COUPLED RECEPTORS [J].
BALDWIN, JM .
EMBO JOURNAL, 1993, 12 (04) :1693-1703
[2]   Protein, lipid and water organization in bacteriorhodopsin crystals:: a molecular view of the purple membrana at 1.9 Å resolution [J].
Belrhali, H ;
Nollert, P ;
Royant, A ;
Menzel, C ;
Rosenbusch, JP ;
Landau, EM ;
Pebay-Peyroula, E .
STRUCTURE, 1999, 7 (08) :909-917
[3]   Estimating the persistence length of a worm-like chain molecule from force-extension measurements [J].
Bouchiat, C ;
Wang, MD ;
Allemand, JF ;
Strick, T ;
Block, SM ;
Croquette, V .
BIOPHYSICAL JOURNAL, 1999, 76 (01) :409-413
[4]   Chemical physics of protein folding [J].
Brooks, CL ;
Gruebele, M ;
Onuchic, JN ;
Wolynes, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (19) :11037-11038
[5]   Single-molecule studies of DNA mechanics [J].
Bustamante, C ;
Smith, SB ;
Liphardt, J ;
Smith, D .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2000, 10 (03) :279-285
[6]   CALCULATION OF THERMAL NOISE IN ATOMIC-FORCE MICROSCOPY [J].
BUTT, HJ ;
JASCHKE, M .
NANOTECHNOLOGY, 1995, 6 (01) :1-7
[7]   ASPARTIC ACID-96 AND ASPARTIC ACID-85 PLAY A CENTRAL ROLE IN THE FUNCTION OF BACTERIORHODOPSIN AS A PROTON PUMP [J].
BUTT, HJ ;
FENDLER, K ;
BAMBERG, E ;
TITTOR, J ;
OESTERHELT, D .
EMBO JOURNAL, 1989, 8 (06) :1657-1663
[8]   Force spectroscopy with single bio-molecules [J].
Clausen-Schaumann, H ;
Seitz, M ;
Krautbauer, R ;
Gaub, HE .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2000, 4 (05) :524-530
[9]   Specific antigen/antibody interactions measured by force microscopy [J].
Dammer, U ;
Hegner, M ;
Anselmetti, D ;
Wagner, P ;
Dreier, M ;
Huber, W ;
Guntherodt, HJ .
BIOPHYSICAL JOURNAL, 1996, 70 (05) :2437-2441
[10]   Lipid patches in membrane protein oligomers: Crystal structure of the bacteriorhodopsin-lipid complex [J].
Essen, LO ;
Siegert, R ;
Lehmann, WD ;
Oesterhelt, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (20) :11673-11678