Aging continuous time random walks

被引:134
作者
Barkai, E
Cheng, YC
机构
[1] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA
[2] MIT, Dept Chem, Cambridge, MA 02139 USA
关键词
FOKKER-PLANCK EQUATION; ANOMALOUS LOCAL VISCOELASTICITY; FRACTIONAL DYNAMICS APPROACH; FOURIER-SERIES METHOD; EINSTEIN RELATION; DISORDERED MEDIA; NUMERICAL INVERSION; LAPLACE TRANSFORM; GLASSY MATERIALS; BROWNIAN-MOTION;
D O I
10.1063/1.1559676
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigate biased and nonbiased aging continuous time random walks (ACTRW), using fractal renewal theory. For example, a biased ACTRW process describes a Montroll-Weiss CTRW process which starts at time -t(a) and then at time t=0 a bias is added to the random walk (i.e., an external field is switched on). Statistical behaviors of the displacement of the random walker r=r(t)-r(0) in the time interval (0,t) are obtained, after aging the random walk in the time interval (-t(a),0). In ACTRW formalism, the Green function P(r,t(a),t) depends on the age of the random walk t(a) and the forward time t. We derive a generalized Montroll-Weiss equation, which yields an exact expression for the Fourier double Laplace transform of the ACTRW Green function. Asymptotic long times t(a) and t behaviors of the Green function are shown to be related to the arc-sine distribution and Levy stable laws. In the limit of t>t(a), we recover the standard nonequilibrium CTRW behaviors, while the important regimes t<t(a) and tsimilar or equal tot(a) exhibit interesting aging effects. Convergence of the ACTRW results towards the CTRW behavior, becomes extremely slow when the diffusion exponent becomes small. In the context of biased ACTRW, we investigate an aging Einstein relation. We briefly discuss aging in Scher-Montroll type of transport in disordered materials. (C) 2003 American Institute of Physics.
引用
收藏
页码:6167 / 6178
页数:12
相关论文
共 70 条
  • [1] Scaling breakdown: A signature of aging
    Allegrini, P
    Bellazzini, J
    Bramanti, G
    Ignaccolo, M
    Grigolini, P
    Yang, J
    [J]. PHYSICAL REVIEW E, 2002, 66 (01): : 1 - 015101
  • [2] Subdiffusion and anomalous local viscoelasticity in actin networks
    Amblard, F
    Maggs, AC
    Yurke, B
    Pargellis, AN
    Leibler, S
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (21) : 4470 - 4473
  • [3] One-dimensional stochastic Levy-Lorentz gas
    Barkai, E
    Fleurov, V
    Klafter, J
    [J]. PHYSICAL REVIEW E, 2000, 61 (02) : 1164 - 1169
  • [4] Subdiffusion and anomalous local viscoelasticity in actin networks - Comment
    Barkai, E
    Klafter, J
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (05) : 1134 - 1134
  • [5] Generalized Einstein relation: A stochastic modeling approach
    Barkai, E
    Fleurov, VN
    [J]. PHYSICAL REVIEW E, 1998, 58 (02) : 1296 - 1310
  • [6] From continuous time random walks to the fractional Fokker-Planck equation
    Barkai, E
    Metzler, R
    Klafter, J
    [J]. PHYSICAL REVIEW E, 2000, 61 (01) : 132 - 138
  • [7] Fractional Kramers equation
    Barkai, E
    Silbey, RJ
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) : 3866 - 3874
  • [8] CTRW pathways to the fractional diffusion equation
    Barkai, E
    [J]. CHEMICAL PHYSICS, 2002, 284 (1-2) : 13 - 27
  • [9] Fractional Fokker-Planck equation, solution, and application
    Barkai, E
    [J]. PHYSICAL REVIEW E, 2001, 63 (04):
  • [10] BARKAI E, IN PRESS PHYS REV LE