A new algebraic approach for calculating the heat kernel in quantum gravity

被引:22
作者
Avramidi, IG
机构
[1] Department of Mathematics, University of Greifswald, 17489 Greifswald
[2] Research Institute for Physics, Rostov State University, Rostov-on-Don 344104
关键词
D O I
10.1063/1.531396
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the heat kernel operator for the Laplace operator on any covariantly constant curved background, i.e., in symmetric spaces, may be presented in the form of an averaging over the Lie group of isometries with some nontrivial measure. Using this representation, the heat kernel diagonal, i.e., the heat kernel in coinciding points is obtained. Related topics concerning the structure of symmetric spaces and the calculation of the effective action are discussed. (C) 1996 American Institute of Physics.
引用
收藏
页码:374 / 394
页数:21
相关论文
共 61 条
[11]  
AVRAMIDI IG, 1995, DISCOURSES MATH ITS, V4
[12]  
AVRAMIDI IG, 1989, YAD FIZ, V49, P1185
[13]  
AVRAMIDI IG, 1994, GRQC9403036 U GREIFS
[14]   THE GENERALIZED SCHWINGER-DEWITT TECHNIQUE IN GAUGE-THEORIES AND QUANTUM-GRAVITY [J].
BARVINSKY, AO ;
VILKOVISKY, GA .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 119 (01) :1-74
[15]   THE BASIS OF NONLOCAL CURVATURE INVARIANTS IN QUANTUM-GRAVITY THEORY - 3RD-ORDER [J].
BARVINSKY, AO ;
GUSEV, YV ;
VILKOVISKY, GA ;
ZHYTNIKOV, VV .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (07) :3525-3542
[16]   COVARIANT PERTURBATION-THEORY .2. 2ND-ORDER IN THE CURVATURE - GENERAL ALGORITHMS [J].
BARVINSKY, AO ;
VILKOVISKY, GA .
NUCLEAR PHYSICS B, 1990, 333 (02) :471-511
[17]   A PHASE-SPACE TECHNIQUE FOR THE PERTURBATION EXPANSION OF SCHRODINGER PROPAGATORS [J].
BARVINSKY, AO ;
OSBORN, TA ;
GUSEV, YV .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (01) :30-61
[18]  
BARVINSKY AO, 1987, NUCL PHYS B, V2382, P163
[19]   HEAT-EQUATION ASYMPTOTICS OF ELLIPTIC-OPERATORS WITH NONSCALAR LEADING SYMBOL [J].
BRANSON, TP ;
GILKEY, PB ;
PIERZCHALSKI, A .
MATHEMATISCHE NACHRICHTEN, 1994, 166 :207-215
[20]   LEADING TERMS IN THE HEAT INVARIANTS [J].
BRANSON, TP ;
GILKEY, PB ;
ORSTED, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (02) :437-450