Quadratically optimized polynomials for fermion simulations

被引:31
作者
Montvay, I [1 ]
机构
[1] DESY, D-22603 Hamburg, Germany
关键词
D O I
10.1016/S0010-4655(98)00007-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Quadratically optimized polynomials are described which are useful in multi-bosonic algorithms for Monte Carlo simulations of quantum field theories with fermions. Algorithms for the computation of the coefficients and roots of these polynomials are described and their implementation in the algebraic manipulation language Maple is discussed. Tests of the evaluation of polynomials on dynamical fermion configurations are performed. In a simple special case the obtained polynomial approximations are compared to Chebyshev polynomials. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:144 / 160
页数:17
相关论文
共 15 条
[1]   Thermodynamics of 1-flavor QCD [J].
Alexandrou, C ;
Borici, A ;
Feo, A ;
deForcrand, P ;
Galli, A ;
Jegerlehner, F ;
Takaishi, T .
NUCLEAR PHYSICS B, 1997, :435-437
[2]   Variants of Luscher's fermion algorithm [J].
Borici, A ;
deForcrand, P .
NUCLEAR PHYSICS B, 1996, :800-803
[3]   SYSTEMATIC-ERRORS OF LUSCHERS FERMION METHOD AND ITS EXTENSIONS [J].
BORICI, A ;
DEFORCRAND, P .
NUCLEAR PHYSICS B, 1995, 454 (03) :645-660
[4]   Non-hermitian exact local bosonic algorithm for dynamical quarks [J].
Borrelli, A ;
deForcrand, P ;
Galli, A .
NUCLEAR PHYSICS B, 1996, 477 (03) :809-832
[5]  
BUNK B, C LATT 97 ED
[6]  
Fox L., 1968, CHEBYSHEV POLYNOMIAL
[7]   Exact local bosonic algorithm for dynamical quarks [J].
Galli, A ;
deForcrand, P .
NUCLEAR PHYSICS B, 1997, :956-958
[8]   QUARKS, NOISE, AND THE LATTICE [J].
KENNEDY, AD ;
KUTI, J ;
MEYER, S ;
PENDLETON, BJ .
PHYSICAL REVIEW D, 1988, 38 (02) :627-635
[9]   NOISE WITHOUT NOISE - A NEW MONTE-CARLO METHOD [J].
KENNEDY, AD ;
KUTI, J .
PHYSICAL REVIEW LETTERS, 1985, 54 (23) :2473-2476
[10]  
KOUTSOUMBAS G, HEPLAT9709091