Feedback stabilization and Lyapunov functions

被引:113
作者
Clarke, FH
Ledyaev, YS
Rifford, L
Stern, RJ
机构
[1] Univ Lyon 1, Inst Girard Desargues, F-69622 Villeurbanne, France
[2] VA Steklov Math Inst, Moscow 117966, Russia
[3] Concordia Univ, Dept Math & Stat, Montreal, PQ H4B 1R6, Canada
关键词
asymptotic stabilizability; discontinuous feedback law; system sampling; locally Lipschitz Lyapunov function; nonsmooth analysis; robustness;
D O I
10.1137/S0363012999352297
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a locally defined, nondifferentiable but Lipschitz Lyapunov function, we employ it in order to construct a ( discontinuous) feedback law which stabilizes the underlying system to any given tolerance. A converse result shows that suitable Lyapunov functions of this type exist under mild assumptions. We also establish that the feedback in question possesses a robustness property relative to measurement error, despite the fact that it may not be continuous.
引用
收藏
页码:25 / 48
页数:24
相关论文
共 32 条
[11]   Asymptotic controllability implies feedback stabilization [J].
Clarke, FH ;
Ledyaev, YS ;
Sontag, ED ;
Subbotin, AI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (10) :1394-1407
[12]   Asymptotic stability and smooth Lyapunov functions [J].
Clarke, FH ;
Ledyaev, YS ;
Stern, RJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 149 (01) :69-114
[13]  
Clarke FH, 1995, J DYN CONTROL SYST, V1, P1, DOI DOI 10.1007/BF02254655
[14]  
CLARKE H, 1990, CLASSICS APPL MATH, V5
[15]  
CORON JM, 1995, TRENDS IN CONTROL, P293
[16]   GLOBAL ASYMPTOTIC STABILIZATION FOR CONTROLLABLE SYSTEMS WITHOUT DRIFT [J].
CORON, JM .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1992, 5 (03) :295-312
[17]  
Filippov A.F., 1988, MATH ITS APPL SOVIET, V18
[18]  
Freeman R. A., 1996, Robust Nonlinear Control Design: State-space and Lyapunov Techniques
[19]   Resonance, stabilizing feedback controls, and regularity of viscosity solutions of Hamilton-Jacobi-Bellman equations [J].
Hermes, H .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1996, 9 (01) :59-72
[20]  
KRASOVSKII NN, 1988, GAME EORETICAL CONTR