Critical exponents for random knots

被引:154
作者
Grosberg, AY [1 ]
机构
[1] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA
关键词
D O I
10.1103/PhysRevLett.85.3858
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The size of a zero-thickness (no excluded volume) nonphantom polymer ring is shown to scale with chain length N in the same way as the size of the excluded-volume (self-avoiding) linear polymer, that is, as N-nu, where nu approximate to 0.588. The consequences of this fact are examined, including the sizes of trivial and nontrivial knots.
引用
收藏
页码:3858 / 3861
页数:4
相关论文
共 30 条
[1]  
[Anonymous], 1974, SOV PHYS JETP
[2]  
[Anonymous], IDEAL KNOTS
[3]   THE STATISTICAL-MECHANICS OF A MELT OF POLYMER RINGS [J].
BRERETON, MG ;
VILGIS, TA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (05) :1149-1167
[4]   CONJECTURES ON THE STATISTICS OF RING POLYMERS [J].
CATES, ME ;
DEUTSCH, JM .
JOURNAL DE PHYSIQUE, 1986, 47 (12) :2121-2128
[5]  
de Gennes P.G., 1979, SCALING CONCEPTS POL
[6]   Universality of random knotting [J].
Deguchi, T ;
Tsurusaki, K .
PHYSICAL REVIEW E, 1997, 55 (05) :6245-6248
[7]  
DEGUCHI T, 1997, LECT KNOTS 96, P95
[8]  
Delbruck M, 1962, MATH PROBLEMS BIOL S, V14, P55
[9]   RING POLYMERS IN SOLUTION - TOPOLOGICAL EFFECTS [J].
DESCLOIZEAUX, J .
JOURNAL DE PHYSIQUE LETTRES, 1981, 42 (19) :L433-L436
[10]   Equilibrium size of large ring molecules [J].
Deutsch, JM .
PHYSICAL REVIEW E, 1999, 59 (03) :R2539-R2541