Reserve mobilization in the Arabidopsis endosperm fuels hypocotyl elongation in the dark, is independent of abscisic acid, and requires PHOSPHOENOLPYRUVATE CARBOXYKINASE1

被引:197
作者
Penfield, S [1 ]
Rylott, EL [1 ]
Gilday, AD [1 ]
Graham, S [1 ]
Larson, TR [1 ]
Graham, IA [1 ]
机构
[1] Univ York, Dept Biol, CNAP, York YO10 5YW, N Yorkshire, England
关键词
D O I
10.1105/tpc.104.024711
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Arabidopsis thaliana is used as a model system to study triacylglycerol (TAG) accumulation and seed germination in oilseeds. Here, we consider the partitioning of these lipid reserves between embryo and endosperm tissues in the mature seed. The Arabidopsis endosperm accumulates significant quantities of storage lipid, and this is effectively catabolized upon germination. This lipid differs in composition from that in the embryo and has a specific function during germination. Removing the endosperm from the wild-type seeds resulted in a reduction in hypocotyl elongation in the dark, demonstrating a role for endospermic TAG reserves in fueling skotomorphogenesis. Seedlings of two allelic gluconeogenically compromised phosphoenolpyruvate carboxykinase1 (pck1) mutants show a reduction in hypocotyl length in the dark compared with the wild type, but this is not further reduced by removing the endosperm. The short hypocotyl phenotypes were completely reversed by the provision of an exogenous supply of sucrose. The PCK1 gene is expressed in both embryo and endosperm, and the induction of PCK1:beta-glucuronidase at radicle emergence occurs in a robust, wave-like manner around the embryo suggestive of the action of a diffusing signal. Strikingly, the induction of PCK1 promoter reporter constructs and measurements of lipid breakdown demonstrate that whereas lipid mobilization in the embryo is inhibited by abscisic acid (ABA), no effect is seen in the endosperm. This insensitivity of endosperm tissues is not specific to lipid breakdown because hydrolysis of the seed coat cell walls also proceeded in the presence of concentrations of ABA that effectively inhibit radicle emergence. Both processes still required gibberellins, however. These results suggest a model whereby the breakdown of seed carbon reserves is regulated in a tissue-specific manner and shed new light on phytohormonal regulation of the germination process.
引用
收藏
页码:2705 / 2718
页数:14
相关论文
共 64 条
[51]   Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana [J].
Rossak, M ;
Smith, M ;
Kunst, L .
PLANT MOLECULAR BIOLOGY, 2001, 46 (06) :717-725
[52]   Contrapuntal networks of gene expression during Arabidopsis seed filling [J].
Ruuska, SA ;
Girke, T ;
Benning, C ;
Ohlrogge, JB .
PLANT CELL, 2002, 14 (06) :1191-1206
[53]   The gluconeogenic enzyme phosphoenolpyruvate carboxykinase in Arabidopsis is essential for seedling establishment [J].
Rylott, EL ;
Gilday, AD ;
Graham, IA .
PLANT PHYSIOLOGY, 2003, 131 (04) :1834-1842
[54]  
Rylott EL, 2001, BIOCHEM SOC T, V29, P283, DOI 10.1042/BST0290283
[55]  
Sambrook J, 1989, MOL CLONING LAB MANU
[56]   Expression of a polygalacturonase associated with tomato seed germination [J].
Sitrit, Y ;
Hadfield, KA ;
Bennett, AB ;
Bradford, KJ ;
Downie, AB .
PLANT PHYSIOLOGY, 1999, 121 (02) :419-428
[57]   Does the glyoxylate cycle have an anaplerotic function in plants? [J].
Smith, SM .
TRENDS IN PLANT SCIENCE, 2002, 7 (01) :12-13
[58]   Fatty acid composition of some seed oils of the sapindaceae [J].
Spitzer, V .
PHYTOCHEMISTRY, 1996, 42 (05) :1357-1360
[59]   The Arabidopsis knockout facility at the University of Wisconsin-Madison [J].
Sussman, MR ;
Amasino, RM ;
Young, JC ;
Krysan, PJ ;
Austin-Phillips, S .
PLANT PHYSIOLOGY, 2000, 124 (04) :1465-1467
[60]  
Szymanski DB, 1998, DEVELOPMENT, V125, P1161