A test of geochemical reactivity as a function of mineral size: Manganese oxidation promoted by hematite nanoparticles

被引:197
作者
Madden, AS [1 ]
Hochella, MF [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Geosci, Lab Nanogeosci & Technol, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.gca.2004.06.035
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Mn2+ (aq) oxidation as promoted by hematite in the presence of molecular oxygen has been studied as a function of hematite particle size. This system is a good candidate to serve as a test of the change of particle reactivity as a function of size due not only to its importance in Earth/environmental processes, but also because it involves electronic coupling between the hematite and adsorbed manganese. The properties of nanoscale hematite, including size quantization of the electronic structure and the relative proportions of terrace vs. edge/kink sites, are expected to change significantly with the particle size in this size range. Experimental results from this study suggest that the heterogeneous manganese oxidation rate is approximately one to one and a half orders of magnitude greater on hematite particles with an average diameter of 7.3 nm than with those having an average diameter of 37 nm, even when normalized to the surface areas of the particles. The acceleration of electron transfer rate for the reactions promoted by the smallest particles is rationalized in the framework of electron transfer theory. According to this theory, for a reaction such as heterogeneous Mn oxidation, the rate depends on three factors: the electronic coupling between initial and final electronic states, the substantial reorganization energy for solvent and coordinated ligands between initial and final states, and the free energy of reaction (corrected for work required to bring reactants together). The adsorbed Mn is electronically coupled with the solid during the electron transfer, and changes in the electronic structure of the solid would be expected to influence the rate. The Lewis base character of surface oxygen atoms increases as the electronic structure becomes quantized, which should allow increased coupling With adsorbed Mn. Finally, as demonstrated previously by in situ AFM observations, the reaction proceeds most readily at topographic features that distort the octahedral Mn2+ coordination environment. This has the effect of lowering the reorganization energy, which effectively controls the magnitude of the transition state barrier. Previous studies of < 10 nm diameter hematite nanoparticles have demonstrated a decrease of symmetry in the average coordination environment of surface atoms, supporting the idea that smaller sizes should correspond to a decrease in reorganization energy. Copyright (c) 2005 Elsevier Ltd.
引用
收藏
页码:389 / 398
页数:10
相关论文
共 93 条
[1]  
ABEL R, 1998, THESIS VIRGINIA TECH
[2]   Perspectives on the physical chemistry of semiconductor nanocrystals [J].
Alivisatos, AP .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13226-13239
[3]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[4]   Atmospheric nanoparticles [J].
Anastasio, C ;
Martin, ST .
NANOPARTICLES AND THE ENVIRONMENT, 2001, 44 :293-349
[5]  
[Anonymous], 1965, J AM WATER WORKS ASS, DOI [DOI 10.1002/J.1551-8833.1965.TB01377.X, DOI 10.1016/j.envres.2006.08.012]
[6]   PHOTOCATALYTIC HYDROGENATION OF CH3CCH WITH H2O ON SMALL-PARTICLE TIO2 - SIZE QUANTIZATION EFFECTS AND REACTION INTERMEDIATES [J].
ANPO, M ;
SHIMA, T ;
KODAMA, S ;
KUBOKAWA, Y .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (16) :4305-4310
[7]  
BANFIELD JF, 1991, AM MINERAL, V76, P113
[8]   Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products [J].
Banfield, JF ;
Welch, SA ;
Zhang, HZ ;
Ebert, TT ;
Penn, RL .
SCIENCE, 2000, 289 (5480) :751-754
[9]  
BANFIELD JF, 2001, REV MIN GEOCHEM, V44
[10]   In situ grazing-incidence extended X-ray absorption fine structure study of Pb(II) chemisorption on hematite (0001) and (1-102) surfaces [J].
Bargar, JR ;
Trainor, TP ;
Fitts, JP ;
Chambers, SA ;
Brown, GE .
LANGMUIR, 2004, 20 (05) :1667-1673