Development of immunosensors using carbon nanotubes

被引:95
作者
Veetil, Jithesh V. [1 ]
Ye, Kaiming [1 ]
机构
[1] Univ Arkansas, Coll Engn, Biomed Engn Program, Fayetteville, AR 72701 USA
关键词
D O I
10.1021/bp0602395
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
With increasing reports on bioterrorism, avian flu, and other bio-threats, rapid and real time detection methods are highly warranted. Studies on developing highly sensitive immunosensors aiming at the early detection and clinical diagnoses of various diseases including cancer are undertaken all over the globe. Carbon nanotubes (CNTs) have been widely discussed as materials with enormous potential for a wide range of in vivo and in vitro bioapplications, ranging from drug delivery to highly sensitive biosensors, owing to their superior electronic and mechanical properties along with nanoscale dimensions. Though a lot of attention has been drawn toward carbon nanotubes for the past 15 years in academia and to a certain extent in industry, CNT-based immunosensors and other applications are still in the nascent stage, and there are many challenges to be overcome for the successful commercialization of the concepts. This article highlights on the recent developments and the possible impacts of carbon nanotube based immunosensors.
引用
收藏
页码:517 / 531
页数:15
相关论文
共 97 条
[1]  
[Anonymous], CHEMINFORM
[2]   Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode [J].
Bahr, JL ;
Yang, JP ;
Kosynkin, DV ;
Bronikowski, MJ ;
Smalley, RE ;
Tour, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (27) :6536-6542
[3]   Stabilization of individual carbon nanotubes in aqueous solutions [J].
Bandyopadhyaya, R ;
Nativ-Roth, E ;
Regev, O ;
Yerushalmi-Rozen, R .
NANO LETTERS, 2002, 2 (01) :25-28
[4]   Rational chemical strategies for carbon nanotube functionalization [J].
Banerjee, S ;
Kahn, MGC ;
Wong, SS .
CHEMISTRY-A EUROPEAN JOURNAL, 2003, 9 (09) :1899-1908
[5]   Near-infrared optical sensors based on single-walled carbon nanotubes [J].
Barone, PW ;
Baik, S ;
Heller, DA ;
Strano, MS .
NATURE MATERIALS, 2005, 4 (01) :86-U16
[6]  
BIANCO A, 2007, NANOTECHNOLOGIES LIF, V10, P85
[7]   Charge transfer from adsorbed proteins [J].
Bradley, K ;
Briman, M ;
Star, A ;
Gruner, G .
NANO LETTERS, 2004, 4 (02) :253-256
[8]   Pseudo 3D single-walled carbon nanotube film for BSA-free protein chips [J].
Byon, HR ;
Hong, BJ ;
Gho, YS ;
Park, JW ;
Choi, HC .
CHEMBIOCHEM, 2005, 6 (08) :1331-1334
[9]   Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications [J].
Byon, HR ;
Choi, HC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (07) :2188-2189
[10]   Metal-assisted organization of shortened carbon nanotubes in monolayer and multilayer forest assemblies [J].
Chattopadhyay, D ;
Galeska, I ;
Papadimitrakopoulos, F .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (38) :9451-9452