The revised DFP algorithm without exact line search

被引:12
作者
Pu, DG
Tian, WW
机构
[1] Tongji Univ, Dept Appl Math, Shanghai 200092, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China
关键词
DFP algorithm; line search; convergence; convergence rate;
D O I
10.1016/S0377-0427(02)00856-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the convergence of the DFP algorithm with revised search direction. Under some inexact line searches, we prove that the algorithm is globally convergent for continuously differentiable functions and the rate of convergence of the algorithm is one-step superlinear and n-step second order for uniformly convex objective functions. From the proof of this paper, we obtain the superlinear and n-step second-order convergence of the DFP algorithm for uniformly convex objective functions. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:319 / 339
页数:21
相关论文
共 38 条
[11]  
Fletcher R, 1987, PRACTICAL METHODS OP, V1
[12]   FAMILY OF OPTIMALLY CONDITIONED QUASI-NEWTON UPDATES FOR UNCONSTRAINED OPTIMIZATION [J].
HU, YF ;
STOREY, C .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1994, 83 (02) :421-431
[13]   AUTOMATIC COLUMN SCALING STRATEGIES FOR QUASI-NEWTON METHODS [J].
Lalee, Marucha ;
Nocedal, Jorge .
SIAM JOURNAL ON OPTIMIZATION, 1993, 3 (03) :637-653
[14]   THE LEAST PRIOR DEVIATION QUASI-NEWTON UPDATE [J].
MIFFLIN, RB ;
NAZARETH, JL .
MATHEMATICAL PROGRAMMING, 1994, 65 (03) :247-261
[15]  
OREN SS, 1974, J OPT THEORY APPL, V37, P137
[16]  
OREN SS, 1972, THESIS STANFORD U
[17]  
Powell M., 1971, IMA J. Appl. Math, V7, P21, DOI [10.1093/imamat/7.1.21, DOI 10.1093/IMAMAT/7.1.21]
[18]  
Powell M. J., 1983, MATH PROGRAMMING STA, P288, DOI [DOI 10.1175/BAMS-84-9-1205, DOI 10.1007/978-3-642-68874-4_12]
[19]   HOW BAD ARE THE BFGS AND DFP METHODS WHEN THE OBJECTIVE FUNCTION IS QUADRATIC [J].
POWELL, MJD .
MATHEMATICAL PROGRAMMING, 1986, 34 (01) :34-47
[20]  
POWELL MJD, 1984, LECT NOTES MATH, V1066, P122