Ill-posedness in the Einstein equations

被引:21
作者
Frittelli, S [1 ]
Gomez, R
机构
[1] Duquesne Univ, Dept Phys, Pittsburgh, PA 15282 USA
[2] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.533423
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the formulation of the Einstein equations widely in use in numerical relativity, namely, the standard ADM form, as well as some of its variations (including the most recent conformally-decomposed version), suffers from a certain but standard type of ill-posedness. Specifically, the norm of the solution is not bounded by the norm of the initial data irrespective of the data. A long-running numerical experiment is performed as well, showing that the type of ill-posedness observed may not be serious in specific practical applications, as is known from many numerical simulations. (C) 2000 American Institute of Physics. [S0022- 2488(00)00108-0].
引用
收藏
页码:5535 / 5549
页数:15
相关论文
共 18 条
[1]   EINSTEIN AND YANG-MILLS THEORIES IN HYPERBOLIC FORM WITHOUT GAUGE-FIXING [J].
ABRAHAMS, A ;
ANDERSON, A ;
CHOQUETBRUHAT, Y ;
YORK, JW .
PHYSICAL REVIEW LETTERS, 1995, 75 (19) :3377-3381
[2]   Gravitational wave extraction and outer boundary conditions by perturbative matching [J].
Abrahams, AM ;
Rezzolla, L ;
Rupright, ME ;
Anderson, A ;
Anninos, P ;
Baumgarte, TW ;
Bishop, NT ;
Brandt, SR ;
Browne, JC ;
Camarda, K ;
Choptuik, MW ;
Cook, GB ;
Correll, RR ;
Evans, CR ;
Finn, LS ;
Fox, GC ;
Gomez, R ;
Haupt, T ;
Huq, MF ;
Kidder, LE ;
Klasky, SA ;
Laguna, P ;
Landry, W ;
Lehner, L ;
Lenaghan, J ;
Marsa, RL ;
Masso, J ;
Matzner, RA ;
Mitra, S ;
Papadopoulos, P ;
Parashar, M ;
Saied, F ;
Saylor, PE ;
Scheel, MA ;
Seidel, E ;
Shapiro, SL ;
Shoemaker, D ;
Smarr, L ;
Szilagyi, B ;
Teukolsky, SA ;
van Putten, MHPM ;
Walker, P ;
Winicour, J ;
York, JW .
PHYSICAL REVIEW LETTERS, 1998, 80 (09) :1812-1815
[3]   Fixing Einstein's equations [J].
Anderson, A ;
York, JW .
PHYSICAL REVIEW LETTERS, 1999, 82 (22) :4384-4387
[4]   Numerical integration of Einstein's field equations [J].
Baumgarte, TW ;
Shapiro, SL .
PHYSICAL REVIEW D, 1999, 59 (02)
[5]   Cauchy-characteristic extraction in numerical relativity [J].
Bishop, NT ;
Gomez, R ;
Lehner, L ;
Winicour, J .
PHYSICAL REVIEW D, 1996, 54 (10) :6153-6165
[6]   High-powered gravitational news [J].
Bishop, NT ;
Gomez, R ;
Lehner, L ;
Maharaj, M ;
Winicour, J .
PHYSICAL REVIEW D, 1997, 56 (10) :6298-6309
[7]   HYPERBOLIC EVOLUTION SYSTEM FOR NUMERICAL RELATIVITY [J].
BONA, C ;
MASSO, J .
PHYSICAL REVIEW LETTERS, 1992, 68 (08) :1097-1099
[8]   NEW FORMALISM FOR NUMERICAL RELATIVITY [J].
BONA, C ;
MASSO, J ;
SEIDEL, E ;
STELA, J .
PHYSICAL REVIEW LETTERS, 1995, 75 (04) :600-603
[9]   Boosted three-dimensional black-hole evolutions with singularity excision [J].
Cook, GB ;
Huq, MF ;
Klasky, SA ;
Scheel, MA ;
Abrahams, AM ;
Anderson, A ;
Anninos, P ;
Baumgarte, TW ;
Bishop, NT ;
Brandt, SR ;
Browne, JC ;
Camarda, K ;
Choptuik, MW ;
Correll, RR ;
Evans, CR ;
Finn, LS ;
Fox, GC ;
Gomez, R ;
Haupt, T ;
Kidder, LE ;
Laguna, P ;
Landry, W ;
Lehner, L ;
Lenaghan, J ;
Marsa, RL ;
Masso, J ;
Matzner, RA ;
Mitra, S ;
Papadopoulos, P ;
Parashar, M ;
Rezzolla, L ;
Rupright, ME ;
Saied, F ;
Saylor, PE ;
Seidel, E ;
Shapiro, SL ;
Shoemaker, D ;
Smarr, L ;
Suen, WM ;
Szilagyi, B ;
Teukolsky, SA ;
van Putten, MHPM ;
Walker, P ;
Winicour, J ;
York, JW .
PHYSICAL REVIEW LETTERS, 1998, 80 (12) :2512-2516
[10]   Hyperbolic reductions for Einstein's equations [J].
Friedrich, H .
CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (06) :1451-1469