Optimal flux patterns in cellular metabolic networks

被引:7
作者
Almaas, Eivind [1 ]
机构
[1] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94551 USA
关键词
D O I
10.1063/1.2737828
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The availability of whole-cell-level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate the metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30 000 random cellular environments. The distribution of reaction fluxes is heavy tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations has relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reactions are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central carbon metabolic pathways for the sample of random environments.
引用
收藏
页数:7
相关论文
共 44 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Global organization of metabolic fluxes in the bacterium Escherichia coli [J].
Almaas, E ;
Kovács, B ;
Vicsek, T ;
Oltvai, ZN ;
Barabási, AL .
NATURE, 2004, 427 (6977) :839-843
[3]  
ALMAAS E, IN PRESS OPTIMIZATIO
[4]   The activity reaction core and plasticity of metabolic networks [J].
Almaas, Eivind ;
Oltvai, Zoltan N. ;
Barabasi, Albert-Laszlo .
PLOS COMPUTATIONAL BIOLOGY, 2005, 1 (07) :557-563
[5]   MORE IS DIFFERENT - BROKEN SYMMETRY AND NATURE OF HIERARCHICAL STRUCTURE OF SCIENCE [J].
ANDERSON, PW .
SCIENCE, 1972, 177 (4047) :393-&
[6]   Phenotype phase plane analysis using interior point methods [J].
Bell, SL ;
Palsson, BO .
COMPUTERS & CHEMICAL ENGINEERING, 2005, 29 (03) :481-486
[7]   Flux analysis of underdetermined metabolic networks: The quest for the missing constraints [J].
Bonarius, HPJ ;
Schmid, G ;
Tramper, J .
TRENDS IN BIOTECHNOLOGY, 1997, 15 (08) :308-314
[8]   Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments [J].
Burgard, AP ;
Vaidyaraman, S ;
Maranas, CD .
BIOTECHNOLOGY PROGRESS, 2001, 17 (05) :791-797
[9]   Chipping away at the transcriptome [J].
Burge, CB .
NATURE GENETICS, 2001, 27 (03) :232-234
[10]   The human transcriptome map:: Clustering of highly expressed genes in chromosomal domains [J].
Caron, H ;
van Schaik, B ;
van der Mee, M ;
Baas, F ;
Riggins, G ;
van Sluis, P ;
Hermus, MC ;
van Asperen, R ;
Boon, K ;
Voûte, PA ;
Heisterkamp, S ;
van Kampen, A ;
Versteeg, R .
SCIENCE, 2001, 291 (5507) :1289-+