Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits

被引:158
作者
Kumar, RS
Ayyadurai, N
Pandiaraja, P
Reddy, AV
Venkateswarlu, Y
Prakash, O
Sakthivel, N [1 ]
机构
[1] Pondicherry Univ, Dept Biotechnol, Pondicherry 605014, India
[2] Indian Inst Chem Technol, Organ Div 1, Nat Prod Lab, Hyderabad 500007, Andhra Pradesh, India
[3] Kansas State Univ, Dept Biochem, Prot NMR Facil, Manhattan, KS 66506 USA
关键词
antifungal activity; indole-3-acetic acid; mass spectroscopy; nuclear magnetic resonance; phenazine-1-carboxamide; Pseudomonas aeruginosa;
D O I
10.1111/j.1365-2672.2004.02435.x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Aim: To study the antifungal activity and plant beneficial traits of a broad-spectrum antagonistic fluorescent pseudomonad strain, PUPa3. Methods and Results: Strain PUPa3 was isolated from the rhizosphere soil of rice and identified as Pseudomonas aeruginosa on the basis of biochemical tests and by comparison of 16S rDNA sequences. This bacterium exhibits a broad-spectrum antifungal activity towards phytopathogenic fungi. The antifungal metabolite by PUPa3 was extracted, purified and characterized using nuclear magnetic resonance (NMR) and mass spectroscopy (MS). Production of indole-3-acetic acid (IAA), siderophores, phosphatase and protease in PUPa3 was determined. Strain PUPa3 did not produce hydrogen cyanide, cellulase and pectinase. Conclusion: The antifungal metabolite produced by PUPa3 has been identified as phenazine-1-carboxamide (PCN) on the basis of NMR and MS data. Strain PUPa3 showed a broad-spectrum antifungal activity towards a range of phytopathogenic fungi. This bacterium also showed several plant growth-promoting traits but did not show the traits attributed to deleterious rhizobacteria. Significance and Impact of the Study: Present study reports the production of PCN as well as IAA for the first time by a saprophytic P. aeruginosa strain PUPa3. Because of the production of siderophore, growth hormone, protease and phosphatase and its innate fungicidal potential, this strain can be used as biofertilizer and antagonist against a range of phytopathogenic fungi that infect rice, groundnut, tobacco, chili, mango, sugarcane, tea, cotton and banana.
引用
收藏
页码:145 / 154
页数:10
相关论文
共 60 条
[1]   CYANIDE PRODUCTION BY RHIZOBACTERIA AS A POSSIBLE MECHANISM OF PLANT-GROWTH INHIBITION [J].
ALSTROM, S ;
BURNS, RG .
BIOLOGY AND FERTILITY OF SOILS, 1989, 7 (03) :232-238
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]  
Anjaiah V, 2003, CAN J MICROBIOL, V49, P85, DOI [10.1139/w03-011, 10.1139/W03-011]
[4]   PYRROLNITRIN NEW ANTIBIOTIC SUBSTANCE PRODUCED BY PSEUDOMONAS [J].
ARIMA, K ;
FUKUTA, A ;
IMANAKA, H ;
KOUSAKA, M ;
TAMURA, G .
AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1964, 28 (08) :575-&
[5]  
Arnow LE, 1937, J BIOL CHEM, V118, P531
[6]   MICROBIAL CYANIDE PRODUCTION IN THE RHIZOSPHERE IN RELATION TO POTATO YIELD REDUCTION AND PSEUDOMONAS SPP-MEDIATED PLANT GROWTH-STIMULATION [J].
BAKKER, AW ;
SCHIPPERS, B .
SOIL BIOLOGY & BIOCHEMISTRY, 1987, 19 (04) :451-457
[7]   Identification and characterization of gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87 [J].
Bangera, MG ;
Thomashow, LS .
JOURNAL OF BACTERIOLOGY, 1999, 181 (10) :3155-3163
[8]   Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent [J].
Bano, N ;
Musarrat, J .
CURRENT MICROBIOLOGY, 2003, 46 (05) :324-328
[9]   Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis [J].
Blumer, C ;
Haas, D .
ARCHIVES OF MICROBIOLOGY, 2000, 173 (03) :170-177
[10]  
Bossis E, 2000, AGRONOMIE, V20, P51, DOI 10.1051/agro:2000112