An Introduction to Liquid Chromatography-Mass Spectrometry Instrumentation Applied in Plant Metabolomic Analyses

被引:165
作者
Allwood, J. William [1 ]
Goodacre, Royston [1 ,2 ]
机构
[1] Univ Manchester, Sch Chem, Manchester Interdisciplinary Bioctr, Manchester M1 7DN, Lancs, England
[2] Univ Manchester, Manchester Ctr Integrat Syst Biol MCISB, Manchester Interdisciplinary Bioctr, Manchester M1 7DN, Lancs, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
plant; metabolomics; high performance liquid chromatography (HPLC); ultra high performance (UHP)LC; mass spectrometry (MS); HYDROPHILIC INTERACTION CHROMATOGRAPHY; ELECTROSPRAY-IONIZATION; H-1-NMR SPECTROSCOPY; NATURAL-PRODUCTS; METABOLITES; DISCRIMINATION; BIOSYNTHESIS; COMBINATION; TEMPERATURE; PRINCIPLES;
D O I
10.1002/pca.1187
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Over the past decade the application of non-targeted high-throughput metabolomic analysis within the plant sciences has gained ever increasing interest and has truly established itself as a valuable tool for plant functional genomics and studies of plant biochemical composition. Whilst proton nuclear magnetic resonance (H-1-NMR) spectroscopy is particularly appropriate for the analysis of bulk metabolites and gas chromatography mass spectrometry (GC-MS) to the analysis of volatile organic compounds (VOC's) and derivatised primary metabolites, liquid chromatography (LC)-MS is highly applicable to the analysis of a wide range of semi-polar compounds including many secondary metabolites of interest to plant researchers and nutritionists. In view of the recent developments in the separation sciences, leading to the advent of ultra high performance liquid chromatography (UHPLC) and MS based technology showing the ever improving resolution of metabolite species and precision of mass measurements (sub-ppm accuracy now being achievable), this review sets out to introduce the background and update the reader upon LC, high performance (HP)LC and UHPLC, as well as the large range of MS instruments that are being applied in current plant metabolomic studies. As well as covering the theory behind modern day LC-MS, the review also discusses the most relevant metabolomics applications for the wide range of MS instruments that are currently being applied to LC. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:33 / 47
页数:15
相关论文
共 89 条
[1]  
Aharoni Asaph, 2002, OMICS A Journal of Integrative Biology, V6, P217, DOI 10.1089/15362310260256882
[2]   Biomarker metabolites capturing the metabolite variance present in a rice plant developmental period [J].
Allwood, J. William ;
Ellis, David I. ;
Goodacre, Royston .
PHYSIOLOGIA PLANTARUM, 2008, 132 (02) :117-135
[3]   Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea [J].
Allwood, JW ;
Ellis, DI ;
Heald, JK ;
Goodacre, R ;
Mur, LAJ .
PLANT JOURNAL, 2006, 46 (03) :351-368
[4]  
ALLWOOD JW, 2009, METABOLOMIC IN PRESS, DOI DOI 10.1007/S11306-009-0169-2
[5]   Principles of Fourier transform ion cyclotron resonance mass spectrometry and its application in structural biology [J].
Barrow, MP ;
Burkitt, WI ;
Derrick, PJ .
ANALYST, 2005, 130 (01) :18-28
[6]   Antioxidants in raspberry: On-line analysis links antioxidant activity to a diversity of individual metabolites [J].
Beekwilder, J ;
Jonker, H ;
Meesters, P ;
Hall, RD ;
van der Meer, IM ;
de Vos, CHR .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2005, 53 (09) :3313-3320
[7]   1H NMR, GC-EI-TOFMS, and Data Set Correlation for Fruit Metabolomics: Application to Spatial Metabolite Analysis in Melon [J].
Biais, Benoit ;
Allwood, J. William ;
Deborde, Catherine ;
Xu, Yun ;
Maucourt, Mickael ;
Beauvoit, Bertrand ;
Dunn, Warwick B. ;
Jacob, Daniel ;
Goodacre, Royston ;
Rolin, Dominique ;
Moing, Annick .
ANALYTICAL CHEMISTRY, 2009, 81 (08) :2884-2894
[8]   Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics [J].
Brown, M. ;
Dunn, W. B. ;
Dobson, P. ;
Patel, Y. ;
Winder, C. L. ;
Francis-McIntyre, S. ;
Begley, P. ;
Carroll, K. ;
Broadhurst, D. ;
Tseng, A. ;
Swainston, N. ;
Spasic, I. ;
Goodacre, R. ;
Kell, D. B. .
ANALYST, 2009, 134 (07) :1322-1332
[9]   Metabolomics applications of FT-ICR mass spectrometry [J].
Brown, SC ;
Kruppa, G ;
Dasseux, JL .
MASS SPECTROMETRY REVIEWS, 2005, 24 (02) :223-231
[10]   Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry [J].
Brugger, B ;
Erben, G ;
Sandhoff, R ;
Wieland, FT ;
Lehmann, WD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (06) :2339-2344