Domain organization of the MscS mechanosensitive channel of Escherichia coli

被引:91
作者
Miller, S [1 ]
Bartlett, W [1 ]
Chandrasekaran, S [1 ]
Simpson, S [1 ]
Edwards, M [1 ]
Booth, IR [1 ]
机构
[1] Univ Aberdeen, Inst Med Sci, Dept Mol & Cell Biol, Aberdeen AB25 2ZD, Scotland
基金
英国惠康基金;
关键词
alkaline phosphatase; gain of function; MscK; structure; topology;
D O I
10.1093/emboj/cdg011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The major structural features of the Escherichia coli MscS mechanosensitive channel protein have been explored using alkaline phosphatase (PhoA) fusions, precise deletions and site-directed mutations. PhoA protein fusion data, combined with the positive-inside rule, strongly support a model in which MscS crosses the membrane three times, adopting an N-out-C-in configuration. Deletion data suggest that the C-terminal domain of the protein is essential for the stability of the MscS channel, whereas the protein will tolerate small deletions at the N-terminus. Four mutants that exhibit either gain-of-function (GOF) or loss-of-function have been identified: a double mutation I48D/S49P inactivates MscS, whereas the MscS mutants T93R, A102P and L109S cause a strong GOF phenotype. The similarity of MscS to the last two domains of MscK (formerly KefA) is reinforced by the demonstration that expression of a truncated MscK protein can substitute for MscL and MscS in downshock survival assays. The data derived from studies of the organization, conservation and the influence of mutations provide significant insights into the structure of the MscS channel.
引用
收藏
页码:36 / 46
页数:11
相关论文
共 42 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   TIGHTLY REGULATED TAC PROMOTER VECTORS USEFUL FOR THE EXPRESSION OF UNFUSED AND FUSED PROTEINS IN ESCHERICHIA-COLI [J].
AMANN, E ;
OCHS, B ;
ABEL, KJ .
GENE, 1988, 69 (02) :301-315
[3]   GADOLINIUM ION INHIBITS LOSS OF METABOLITES INDUCED BY OSMOTIC SHOCK AND LARGE STRETCH-ACTIVATED CHANNELS IN BACTERIA [J].
BERRIER, C ;
COULOMBE, A ;
SZABO, I ;
ZORATTI, M ;
GHAZI, A .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 206 (02) :559-565
[4]  
Blount P, 1999, Methods Enzymol, V294, P458
[5]   Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli [J].
Blount, P ;
Sukharev, SI ;
Schroeder, MJ ;
Nagle, SK ;
Kung, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (21) :11652-11657
[6]   Membrane topology and multimeric structure of a mechanosensitive channel protein of Escherichia coli [J].
Blount, P ;
Sukharev, SI ;
Moe, PC ;
Schroeder, MJ ;
Guy, HR ;
Kung, C .
EMBO JOURNAL, 1996, 15 (18) :4798-4805
[7]   Mutations in a bacterial mechanosensitive channel change the cellular response to osmotic stress [J].
Blount, P ;
Schroeder, MJ ;
Kung, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (51) :32150-32157
[8]   Managing hypoosmotic stress:: aquaporins and mechanosensitive channels in Escherichia coli [J].
Booth, IR ;
Louis, P .
CURRENT OPINION IN MICROBIOLOGY, 1999, 2 (02) :166-169
[9]   ANALYSIS OF THE TOPOLOGY OF A MEMBRANE-PROTEIN BY USING A MINIMUM NUMBER OF ALKALINE-PHOSPHATASE FUSIONS [J].
BOYD, D ;
TRAXLER, B ;
BECKWITH, J .
JOURNAL OF BACTERIOLOGY, 1993, 175 (02) :553-556
[10]   DETERMINANTS OF MEMBRANE-PROTEIN TOPOLOGY [J].
BOYD, D ;
MANOIL, C ;
BECKWITH, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (23) :8525-8529