Molecular modeling of prohibitin domains

被引:46
作者
Winter, Anja
Kamarainen, Outi
Hofmann, Andreas
机构
[1] Griffith Univ, Eskitis Inst Cell & Mol Therapies, Struct Chem Program, Brisbane, Qld 4111, Australia
[2] Univ Edinburgh, Sch Biol Sci, Inst Struct & Mol Biol, Edinburgh, Midlothian, Scotland
关键词
molecular modeling; PHB domain; protein-protein interactions; m-AAA-protease; melanogenin;
D O I
10.1002/prot.21355
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Prohibitins comprise a family of highly conserved ubiquitous eukaryotic proteins that mainly localize to the mitochondria. They have been implicated in important cellular processes such as cellular signaling and transcriptional control, apoptosis, cellular senescence, and mitochondrial biogenesis. Using molecular modeling techniques, we have generated structural models of human prohibitins BAP32 and BAP37, which have previously been shown to exist as large ringlike oligomers in the membrane-bound state. The middle domain of prohibitins is evolutionary conserved in the family of SPFH (PHB) domain proteins. On the basis of the known structure of flotillin-2, another member of the SPFH-domain family, we have generated homology models for BAP32 and BAP37, and elucidated the implications for formation of high molecular weight oligomers. A model for the dimeric-building block of BAP32: BAP37 for such assemblies was generated and its stability scrutinized by molecular dynamics simulations. The model of BAP32 was also analyzed as to potential ligand-binding sites and the previously identified ligand melanogenin was docked into a membrane-proximal cavity. The results are discussed in the context of prohibitin interactions with mitochondrial AAA-proteases and we suggest two possible interaction interfaces between the BAP32:BAP37 building block and the protease.
引用
收藏
页码:353 / 362
页数:10
相关论文
共 51 条
  • [1] Prohibitin is involved in mitochondrial biogenesis in plants
    Ahn, CS
    Lee, JH
    Hwang, AR
    Kim, WT
    Pai, HS
    [J]. PLANT JOURNAL, 2006, 46 (04) : 658 - 667
  • [2] Bacher S, 2002, BIOCHIMIE, V84, P1207
  • [3] A structure for the yeast prohibitin complex: Structure prediction and evidence from chemical crosslinking and mass spectrometry
    Back, JW
    Sanz, MA
    De Jong, L
    De Koning, LJ
    Nijtmans, LGJ
    De Koster, CG
    Grivell, LA
    Van der Spek, H
    Muijsers, AO
    [J]. PROTEIN SCIENCE, 2002, 11 (10) : 2471 - 2478
  • [4] Crystallography & NMR system:: A new software suite for macromolecular structure determination
    Brunger, AT
    Adams, PD
    Clore, GM
    DeLano, WL
    Gros, P
    Grosse-Kunstleve, RW
    Jiang, JS
    Kuszewski, J
    Nilges, M
    Pannu, NS
    Read, RJ
    Rice, LM
    Simonson, T
    Warren, GL
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 : 905 - 921
  • [5] Protein structure prediction servers at university college london
    Bryson, K
    McGuffin, LJ
    Marsden, RL
    Ward, JJ
    Sodhi, JS
    Jones, DT
    [J]. NUCLEIC ACIDS RESEARCH, 2005, 33 : W36 - W38
  • [6] The prohibitin family of mitochondrial proteins regulate replicative lifespan
    Coates, PJ
    Jamieson, DJ
    Smart, K
    Prescott, AR
    Hall, PA
    [J]. CURRENT BIOLOGY, 1997, 7 (08) : 607 - 610
  • [7] DeLano W. L., 2002, PYMOL
  • [8] MUSCLE: multiple sequence alignment with high accuracy and high throughput
    Edgar, RC
    [J]. NUCLEIC ACIDS RESEARCH, 2004, 32 (05) : 1792 - 1797
  • [9] Further additions to MolScript version 1.4, including reading and contouring of electron-density maps
    Esnouf, RM
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1999, 55 : 938 - 940
  • [10] PCSB - a program collection for structural biology and biophysical chemistry
    Hofmann, A
    Wlodawer, A
    [J]. BIOINFORMATICS, 2002, 18 (01) : 209 - 210