Budding yeast PAK kinases regulate mitotic exit by two different mechanisms

被引:25
作者
Chiroli, E [1 ]
Fraschini, R [1 ]
Beretta, A [1 ]
Tonelli, M [1 ]
Lucchini, G [1 ]
Piatti, S [1 ]
机构
[1] Dipartimento Biotecnol & Biosci, I-20126 Milan, Italy
关键词
cytokinesis; mitotic exit network; Cla4; spindle checkpoint; Swe1;
D O I
10.1083/jcb.200209097
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
W e report the characterization of the dominant-negative CLA4t allele of the budding yeast CLA4 gene, encoding a member of the p21-activated kinase (PAK) family of protein kinases, which, together with its homologue STE20, plays an essential role in promoting budding and cytokinesis. Overproduction of the Cla4t protein likely inhibits both endogenous Cla4 and Ste20 and causes a delay in the onset of anaphase that correlates with inactivation of Cdc20/anaphase-promoting complex (APC)-dependent proteolysis of both the cyclinB Clb2 and securin. Although the precise mechanism of APC inhibition by Cla4t remains to be elucidated, our results suggest that Cla4 and Ste20 may regulate the first wave of cyclinB proteolysis mediated by Cdc20/APC, which has been shown to be crucial for activation of the mitotic exit network (MEN). We show that the Cdk1-inhibitory kinase Swe1 is required for the Cla4t-dependent delay in cell cycle progression, suggesting that it might be required to prevent full Cdc20/APC and MEN activation. In addition, inhibition of PAK kinases by Cla4t prevents mitotic exit also by a Swe1-independent mechanism impinging directly on the MEN activator Tem1.
引用
收藏
页码:857 / 874
页数:18
相关论文
共 75 条
[1]   The surveillance mechanism of the spindle position checkpoint in yeast [J].
Adames, NR ;
Oberle, JR ;
Cooper, JA .
JOURNAL OF CELL BIOLOGY, 2001, 153 (01) :159-168
[2]   CDC42 AND CDC43, 2 ADDITIONAL GENES INVOLVED IN BUDDING AND THE ESTABLISHMENT OF CELL POLARITY IN THE YEAST SACCHAROMYCES-CEREVISIAE [J].
ADAMS, AEM ;
JOHNSON, DI ;
LONGNECKER, RM ;
SLOAT, BF ;
PRINGLE, JR .
JOURNAL OF CELL BIOLOGY, 1990, 111 (01) :131-142
[3]   Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage [J].
Alexandru, G ;
Zachariae, W ;
Schleiffer, A ;
Nasmyth, K .
EMBO JOURNAL, 1999, 18 (10) :2707-2721
[4]   A mechanism for coupling exit from mitosis to partitioning of the nucleus [J].
Bardin, AJ ;
Visintin, R ;
Amon, A .
CELL, 2000, 102 (01) :21-31
[5]   Men and sin: What's the difference? [J].
Bardin, AJ ;
Amon, A .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2001, 2 (11) :815-826
[6]   Two different modes of cyclin Clb2 proteolysis during mitosis in Saccharomyces cerevisiae [J].
Bäumer, M ;
Braus, GH ;
Irniger, S .
FEBS LETTERS, 2000, 468 (2-3) :142-148
[7]   Cla4p, a Saccharomyces cerevisiae Cdc42p-activated kinase involved in cytokinesis, is activated at mitosis [J].
Benton, BK ;
Tinkelenberg, A ;
Gonzalez, I ;
Cross, FR .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (09) :5067-5076
[8]   Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae cytokinesis [J].
Bi, E ;
Maddox, P ;
Lew, DJ ;
Salmon, ED ;
McMillan, JN ;
Yeh, E ;
Pringle, JR .
JOURNAL OF CELL BIOLOGY, 1998, 142 (05) :1301-1312
[9]   PROPERTIES OF SACCHAROMYCES-CEREVISIAE WEE1 AND ITS DIFFERENTIAL REGULATION OF P34(CDC28) IN RESPONSE TO G(1) AND G(2) CYCLINS [J].
BOOHER, RN ;
DESHAIES, RJ ;
KIRSCHNER, MW .
EMBO JOURNAL, 1993, 12 (09) :3417-3426
[10]   Novel Cdc42-binding proteins Gic1 and Gic2 control cell polarity in yeast [J].
Brown, JL ;
Jaquenoud, M ;
Gulli, MP ;
Chant, J ;
Peter, M .
GENES & DEVELOPMENT, 1997, 11 (22) :2972-2982