Recent Progress on Nafion-Based Nanocomposite Membranes for Fuel Cell Applications

被引:110
作者
Cele, Nonhlanhla [1 ]
Ray, Suprakas Sinha [1 ]
机构
[1] CSIR, DST CSIR Nanotechnol Innovat Ctr, Natl Ctr Nanostruct Mat, ZA-0001 Pretoria, South Africa
关键词
catalysts; fabrication; Nafion; nanocomposite membranes; nanoparticles; PROTON-EXCHANGE MEMBRANE; LAYERED SILICATE NANOCOMPOSITES; PERFLUOROSULFONIC ACID IONOMER; POLYMER ELECTROLYTE MEMBRANES; SOL-GEL REACTION; METHANOL FUEL; CARBON NANOTUBES; COMPOSITE MEMBRANES; MONTMORILLONITE NANOCOMPOSITE; MICROSTRUCTURAL EVOLUTION;
D O I
10.1002/mame.200900143
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Proton exchange membrane fuel cells (PEMFCs) have attracted tremendous attention because of their high efficiency compared to other types of fuel cells. Nafion is the most commonly used polymer for membranes used in PEMFCs. A large variety of nanoparticles of different natures and sizes can be blended with a Nafion matrix, generating a new class of nanostructured electrolyte membrane with interesting physical properties. In this paper, we discuss the recent progress in the field of Nafion-based nanocomposite membranes. They exhibit a significant improvement in thermomechanical and thermal stability as well as proton conductivity at very low filler contents. The preparation, characterization, and properties of various types of Nafion-based nanocomposite membranes are critically reviewed, and detailed examples are summarized.
引用
收藏
页码:719 / 738
页数:20
相关论文
共 134 条
[11]   Microstructural characterization of Zr-phosphate-Nafion® membranes for direct methanol fuel cell (DMFC) applications [J].
Bauer, F ;
Willert-Porada, M .
JOURNAL OF MEMBRANE SCIENCE, 2004, 233 (1-2) :141-149
[12]   Nanotubes [J].
Bernholc, J ;
Roland, C ;
Yakobson, BI .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 1997, 2 (06) :706-715
[13]  
Bockris J.O., 1969, Fuel Cells: Their Electrochemistry
[14]   Nafion-clay hybrids with a network structure [J].
Burgaz, Engin ;
Lian, Huiqin ;
Alonso, Rafael Herrera ;
Estevez, Luis ;
Kelarakis, Antonios ;
Giannelis, Emmanuel P. .
POLYMER, 2009, 50 (11) :2384-2392
[15]  
Causin V, 2008, J NANOSCI NANOTECHNO, V8, P1823, DOI 10.1166/jnn.2008.003
[16]  
CELE N, UNPUB
[17]  
CHIDA E, 2000, CHEM LETT, V20, P1268
[18]   Electrical and rheological characteristics of poly(vinyl acetate)/multi-walled carbon nanotube nanocomposites [J].
Choi, C. S. ;
Park, B. J. ;
Choi, H. J. .
DIAMOND AND RELATED MATERIALS, 2007, 16 (4-7) :1170-1173
[19]   The reinforcement role of carbon nanotubes in epoxy composites with different matrix stiffness [J].
Ci, LJ ;
Bai, JC .
COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (3-4) :599-603
[20]   Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling [J].
Coleman, Jonathan N. ;
Cadek, Martin ;
Ryan, Kevin P. ;
Fonseca, Antonio ;
Nagy, Janos B. ;
Blau, Werner J. ;
Ferreira, Mauro S. .
POLYMER, 2006, 47 (26) :8556-8561