Measure-preserving integrators for molecular dynamics in the isothermal-isobaric ensemble derived from the Liouville operator

被引:57
作者
Yu, Tang-Qing [1 ]
Alejandre, Jose [3 ]
Lopez-Rendon, Roberto [4 ]
Martyna, Glenn J. [5 ]
Tuckerman, Mark E. [1 ,2 ]
机构
[1] NYU, Dept Chem, New York, NY 10003 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10003 USA
[3] Univ Autonoma Metropolitana Iztapalapa, Dept Quim, Mexico City 09340, DF, Mexico
[4] Univ Autonoma Estado Mexico, Fac Ciencias, Toluca 50000, Mexico
[5] IBM Corp, Thomas J Watson Res Ctr, Div Phys Sci, Yorktown Hts, NY 10598 USA
关键词
Isothermal-isobaric ensemble; Measure-preserving integrator; Liouville operator; Holonomic constraints; ROLL algorithm; CANONICAL ENSEMBLE; SIMULATIONS; EQUATIONS; NOSE; ALGORITHM; EQUILIBRIUM; SHAKE;
D O I
10.1016/j.chemphys.2010.02.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Liouville operator approach is employed to derive a new measure-preserving geometric integrator for molecular dynamics simulations in the isothermal-isobaric (NPT) ensemble. Recently, we introduced such a scheme for NPT simulations with isotropic cell fluctuations in the absence of holonomic constraints [M. E. Tuckerman et al., J. Phys. A 39 (2006) 5629]. Here, we extend this approach to include both fully flexible cell fluctuations and holonomic constraints via a new and simpler formulation of the ROLL algorithm of Martyna et al. [Martyna et al., Mol. Phys. 87 (1996) 1117]. The new algorithm improves on earlier schemes in that it possesses a simpler mathematical structure and rigorously preserves the phase space metric. The new algorithm is illustrated on two example systems, ice and liquid n-decane. (C) 2010 Elsevier B. V. All rights reserved.
引用
收藏
页码:294 / 305
页数:12
相关论文
共 42 条
[1]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[3]   The Nose-Poincare method for constant temperature molecular dynamics [J].
Bond, SD ;
Leimkuhler, BJ ;
Laird, BB .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 151 (01) :114-134
[4]   HIGHER-ORDER HYBRID MONTE-CARLO ALGORITHMS [J].
CREUTZ, M ;
GOCKSCH, A .
PHYSICAL REVIEW LETTERS, 1989, 63 (01) :9-12
[5]  
Eisenberg D., 1969, The Structure and Properties of Water
[6]   Reversible measure-preserving integrators for non-Hamiltonian systems [J].
Ezra, Gregory S. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (03)
[7]   Unit cells for the simulation of hexagonal ice [J].
Hayward, JA ;
Reimers, JR .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (04) :1518-1529
[8]   CONSTANT-PRESSURE EQUATIONS OF MOTION [J].
HOOVER, WG .
PHYSICAL REVIEW A, 1986, 34 (03) :2499-2500
[9]   CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS [J].
HOOVER, WG .
PHYSICAL REVIEW A, 1985, 31 (03) :1695-1697
[10]   COMPARISON OF SIMPLE POTENTIAL FUNCTIONS FOR SIMULATING LIQUID WATER [J].
JORGENSEN, WL ;
CHANDRASEKHAR, J ;
MADURA, JD ;
IMPEY, RW ;
KLEIN, ML .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (02) :926-935