Direct in situ measurements of Li transport in Li-ion battery negative electrodes

被引:372
作者
Harris, Stephen J. [1 ]
Timmons, Adam [1 ]
Baker, Daniel R. [1 ]
Monroe, Charles [2 ]
机构
[1] Gen Motors R&D Ctr, Electrochem Energy Res Lab, Warren, MI 48090 USA
[2] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
关键词
LITHIUM INTERCALATION; RAMAN-SPECTROSCOPY; CAPACITY FADE; GRAPHITE; PERFORMANCE; MECHANISMS; INTERFACE; CHARGE; TEM; DEPENDENCE;
D O I
10.1016/j.cplett.2009.12.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We describe the first direct in situ measurements of Li transport in an operating cell. Motion of the lithiation front in the graphite electrode suggests that transport could be controlled by liquid-phase diffusion. The electrochemical (current-voltage) data are successfully modeled with a diffusion equation that contains no material or microstructural information. The model is only qualitatively successful in predicting observed Li transport rate data, suggesting that microstructural information is required and that the actual process is more complex than simply diffusion. The technique can provide data for studying Li plating and Li dendrite growth, both of which can cause battery degradation. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:265 / 274
页数:10
相关论文
共 64 条
[1]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[2]   Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries [J].
Aurbach, Doron ;
Markovsky, Boris ;
Salitra, Gregory ;
Markevich, Elena ;
Talyossef, Yossi ;
Koltypin, Maxim ;
Nazar, Linda ;
Ellis, Brian ;
Kovacheva, Daniella .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :491-499
[3]   Revisited structures of dense and dilute stage II lithium-graphite intercalation compounds [J].
Billaud, D ;
Henry, FX ;
Lelaurain, M ;
Willmann, P .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1996, 57 (6-8) :775-781
[4]   VALENCE-CHARGE DENSITY OF GRAPHITE [J].
CHEN, R ;
TRUCANO, P ;
STEWART, RF .
ACTA CRYSTALLOGRAPHICA SECTION A, 1977, 33 (SEP1) :823-828
[5]   A mathematical model of stress generation and fracture in lithium manganese oxide [J].
Christensen, J ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (06) :A1019-A1030
[6]   Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy [J].
Cohen, YS ;
Cohen, Y ;
Aurbach, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (51) :12282-12291
[7]   PHASE-DIAGRAM OF LIXC6 [J].
DAHN, JR .
PHYSICAL REVIEW B, 1991, 44 (17) :9170-9177
[8]   Modeling a porous intercalation electrode with two characteristic particle sizes [J].
Darling, R ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (12) :4201-4208
[9]   XPS identification of the organic and inorganic components of the electrode/electrolyte interface formed on a metallic cathode [J].
Dedryvère, R ;
Laruelle, S ;
Grugeon, S ;
Gireaud, L ;
Tarascon, JM ;
Gonbeau, D .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (04) :A689-A696
[10]   Alternating current impedance electrochemical modeling of lithium-ion positive electrodes [J].
Dees, D ;
Gunen, E ;
Abraham, D ;
Jansen, A ;
Prakash, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (07) :A1409-A1417