Leukemia stem cells are defined as transformed hematopoietic stem cells or committed progenitor cells that have amplified or acquired the stem cell capacity for self-renewal, albeit in a poorly regulated fashion. In this issue of Cancer Cell, Huntly and colleagues report a striking difference in the ability of two leukemia-associated fusion proteins, MOZ-TIF2 and BCR-ABL, to transform myeloid progenitor populations. This rigorous study supports the idea of a hierarchy among leukemia-associated protooncogenes for their ability to endow committed myeloid progenitors with the self-renewal capacity driving leukemic stem cell propagation, and sheds new light on the pathogenesis of chronic and acute myelogenous leukemias.