Towards all-dry lithography: Electron-beam patternable poly(glycidyl methacrylate) thin films from hot filament chemical vapor deposition

被引:31
作者
Mao, Y
Felix, NM
Nguyen, PT
Ober, CK
Gleason, KK
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] Cornell Univ, Dept Chem & Biomol Engn, Ithaca, NY 14853 USA
[4] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2004年 / 22卷 / 05期
基金
美国国家科学基金会;
关键词
D O I
10.1116/1.1800351
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Chemical vapor deposition (CVD) of resist thin films is a dry processing alternative to the conventional spin casting of resists. However, the sensitivity and resolution of plasma CVD resists are limited due to the crosslinked structure in the deposited films. In this study, we demonstrated hot filament chemical vapor deposition (HFCVD) of poly(glycidyl methacrylate) (PGMA) thin films with improved sensitivity and resolution under electron-beam irradiation. We also demonstrated supercritical CO2 development of the HFCVD PGMA thin films, which indicates the potential for an "all-dry" lithographic process. The pendent epoxide groups were retained in the low-energy HFCVD process, and linear polymeric structure was achieved. The HFCVD PGMA films have an electron-beam sensitivity of 27 muC/cm(2) using conventional development and an electron-beam sensitivity of 15 muC/cm(2) using supercritical CO2 development. Decreasing film number-average molecular weight (M-n) decreases sensitivity but improves resolution by alleviating the swelling of small features. The PGMA film with M-n 4700 g/mol resolved 80 nm features using conventional development and 300 nm features using supercritical CO2 development. (C) 2004 American Vacuum Society.
引用
收藏
页码:2473 / 2478
页数:6
相关论文
共 29 条
[1]   Surface characterization of porous, biocompatible protein polymer thin films [J].
Buchko, CJ ;
Kozloff, KM ;
Martin, DC .
BIOMATERIALS, 2001, 22 (11) :1289-1300
[2]   Microstructural analysis of poly(glycidyl methacrylate) by 1H and 13C NMR spectroscopy [J].
Espinosa, MH ;
del Toro, PJO ;
Silva, DZ .
POLYMER, 2001, 42 (08) :3393-3397
[3]  
GALLAGHERWETMORE P, 1995, P SOC PHOTO-OPT INS, V2438, P694, DOI 10.1117/12.210367
[4]   Neodymium alk(aryl)oxides-dialkylmagnesium systems for butadiene polymerization and copolymerization with styrene and glycidyl methacrylate [J].
Gromada, M ;
le Pichon, L ;
Mortreux, A ;
Leising, F ;
Carpentier, JF .
JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2003, 683 (01) :44-55
[5]   PLASMA-DEPOSITED ORGANOSILICON THIN-FILMS AS DRY RESISTS FOR DEEP ULTRAVIOLET LITHOGRAPHY [J].
HORN, MW ;
PANG, SW ;
ROTHSCHILD, M .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1990, 8 (06) :1493-1496
[6]   Plasma-deposited silylation resist for 193 nm lithography [J].
Horn, MW ;
Rothschild, M ;
Maxwell, BE ;
Goodman, RB ;
Kunz, RR ;
Eriksen, LM .
APPLIED PHYSICS LETTERS, 1996, 68 (02) :179-181
[7]   A complete dry lithography using plasma processes [J].
Kim, SO ;
Lee, DC .
SURFACE & COATINGS TECHNOLOGY, 1999, 120 :746-751
[8]   Phase behavior of polymers in supercritical fluid solvents [J].
Kirby, CF ;
McHugh, MA .
CHEMICAL REVIEWS, 1999, 99 (02) :565-602
[9]   Structure and morphology of fluorocarbon films grown by hot filament chemical vapor deposition [J].
Lau, KKS ;
Caulfield, JA ;
Gleason, KK .
CHEMISTRY OF MATERIALS, 2000, 12 (10) :3032-3037
[10]   Fluorocarbon dielectrics via hot filament chemical vapor deposition [J].
Lau, KKS ;
Murthy, SK ;
Lewis, HGP ;
Caulfield, JA ;
Gleason, KK .
JOURNAL OF FLUORINE CHEMISTRY, 2003, 122 (01) :93-96