Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast

被引:326
作者
Fukunaga, Masaki [1 ]
Li, Tie-Qiang [1 ]
van Gelderen, Peter [1 ]
de Zwart, Jacco A. [1 ]
Shmueli, Karin [1 ]
Yao, Bing [1 ]
Lee, Jongho [1 ]
Maric, Dragan [2 ]
Aronova, Maria A. [3 ]
Zhang, Guofeng [3 ]
Leapman, Richard D. [3 ]
Schenck, John F. [4 ]
Merkle, Hellmut [1 ]
Duyn, Jeff H. [1 ]
机构
[1] NINDS, Adv MRI, Lab Funct & Mol Imaging, NIH, Bethesda, MD 20892 USA
[2] NINDS, Neurophysiol Lab, NIH, Bethesda, MD 20892 USA
[3] Natl Inst Biomed Imaging & Bioengn, Lab Bioengn & Phys Sci, NIH, Bethesda, MD 20892 USA
[4] Gen Elect Global Res Ctr, Niskayuna, NY 12309 USA
关键词
myelin; ferritin; laminar variation; brain structure; magnetic susceptibility; HIGH-RESOLUTION MRI; HIGH-FIELD MRI; MAGNETIC-SUSCEPTIBILITY; HUMAN BRAIN; CELLULAR-DISTRIBUTION; WHITE-MATTER; FERRITIN; OLIGODENDROCYTES; IMAGES; SHIFTS;
D O I
10.1073/pnas.0911177107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent advances in high-field MRI have dramatically improved the visualization of human brain anatomy in vivo. Most notably, in cortical gray matter, strong contrast variations have been observed that appear to reflect the local laminar architecture. This contrast has been attributed to subtle variations in the magnetic properties of brain tissue, possibly reflecting varying iron and myelin content. To establish the origin of this contrast, MRI data from postmortem brain samples were compared with electron microscopy and histological staining for iron and myelin. The results show that iron is distributed over laminae in a pattern that is suggestive of each region's myeloarchitecture and forms the dominant source of the observed MRI contrast.
引用
收藏
页码:3834 / 3839
页数:6
相关论文
共 48 条
[1]   A myelo-architectonic method for the structural classification of cortical areas [J].
Annese, J ;
Pitiot, A ;
Dinov, ID ;
Toga, AW .
NEUROIMAGE, 2004, 21 (01) :15-26
[2]   Detection of entorhinal layer II using tesla magnetic resonance imaging [J].
Augustinack, JC ;
van der Kouwe, AJW ;
Blackwell, ML ;
Salat, DH ;
Wiggins, CJ ;
Frosch, MP ;
Wiggins, GC ;
Potthast, A ;
Wald, LL ;
Fischl, BR .
ANNALS OF NEUROLOGY, 2005, 57 (04) :489-494
[3]   Imaging cortical anatomy by high-resolution MR at 3.0T: Detection of the stripe of Gennari in visual area 17 [J].
Barbier, EL ;
Marrett, S ;
Danek, A ;
Vortmeyer, A ;
van Gelderen, P ;
Duyn, J ;
Bandettini, P ;
Grafman, J ;
Koretskyk, AP .
MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (04) :735-738
[4]   MR CONTRAST DUE TO INTRAVASCULAR MAGNETIC-SUSCEPTIBILITY PERTURBATIONS [J].
BOXERMAN, JL ;
HAMBERG, LM ;
ROSEN, BR ;
WEISSKOFF, RM .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :555-566
[5]   High-resolution MRI:: in vivo histology? [J].
Bridge, H ;
Clare, S .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2006, 361 (1465) :137-146
[6]  
Brodmann K., 1909, VERGLEICHENDE LOKALI
[7]   MAGNETOFERRITIN - CHARACTERIZATION OF A NOVEL SUPERPARAMAGNETIC MR CONTRAST AGENT [J].
BULTE, JWM ;
DOUGLAS, T ;
MANN, S ;
FRANKEL, RB ;
MOSKOWITZ, BM ;
BROOKS, RA ;
BAUMGARNER, CD ;
VYMAZAL, J ;
STRUB, MP ;
FRANK, JA .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 1994, 4 (03) :497-505
[8]  
Cheepsunthorn P, 1998, J COMP NEUROL, V400, P73
[9]  
CHU SCK, 1990, MAGN RESON MED, V13, P239, DOI 10.1002/mrm.1910130207
[10]   INVIVO MYELOARCHITECTONIC ANALYSIS OF HUMAN STRIATE AND EXTRASTRIATE CORTEX USING MAGNETIC-RESONANCE-IMAGING [J].
CLARK, VP ;
COURCHESNE, E ;
GRAFE, M .
CEREBRAL CORTEX, 1992, 2 (05) :417-424